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Chapter 9

LOGARITHMS AND EXPONENTS

9-1. A New Func'..on: x = log x.

Consider the shaded rectangle in

Fig. 9-1a; it is bounded by the

x-axis, the line y = 2, and the

vertical lines erected at x = 2

and at the point whose abscissa

is x. If x > 2, the length of

the base of the rectangle is

x - 2; if x < 2, then x - 2

is the negative of the length of

the base. In all cases the alti-

tude of the rectangle i$ 2. Thus

2(x - 2), or 2x - 4, is an

expression whose value is the area

of the rectangle if x > 2, whose

value is 0 if x = 2, and whose

value is the negative of the area

of the rectangle if x < 2. Set

y = 2x - 4. The shaded rectangle

has been used to define a corr-

espondence between x and y

which is a linear function. The

graph of y = 2x - 4 is shown

in Fig. 9-1b.

Figure 9-1a. The
shaded region is used to
define a linear function.

Figure 9-1b. Graph
of y = 2x - 4.



4-54

Consider the shaded trape-

zoid in Fig. 9-1c; it is bounded
by the x-axis, the line

y = -2x + 4, and the vertical

lines erected at x = 1 and at

the point whose abscissa is x.

For the purposes of this

illustration only those values

of x in the interval

0 x 2 will be considered.

If 1 < x I 2, the length of the

altitude of the trapezoid is

x - 1; if 0 x <'al, then
x - 1 is the negative of the

length of the altitude. The base of the trapezoid at x 1 is
2, and the base at x is (-2x + 4). One-half the sum of these

bases is (-2x + 2
or (-x + 3). Since the area of a trape-

zoid is the product of the altitude and one-half the sum of the

bases, we have (-x + 3)(x-1) = -x
2
+ 4x - 3 as the expression

whose value is the area of the trapezoid if 1 < x < 2, whose
value is 0 if x = 1, and whose value is the negative of the
area of the trapezoid if 0 x < 1.

Set y = -x2 + 4x - 3. The

shaded trapezoid has been used to

define a correspondence between

x and y which is a quadratic

function. The graph of

y = -x2 + 4x - 3 is shown in

Fig. 9-1d.

Figure 9-1c. The shaded
region is used to define
a quadratic function.

[sec. 9-1]
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Figure 9-1d. Graph of
y = -x2 + 4x - 3 for
0 < x < 2.
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The functions obtained in the two foregoing examples are the

familiar linear and quadratic functions which were studJ.ed,in

Chapters 3 and 4. Other functions can be obtained by considering

the areas under other curves, and some of these functions are en-

tirely new and unfamiliar.

Consider the shaded region

in Fig. 9-1e; it is bounded by

the x-axis, the hyperbola y = k/x,

and the vertical lines erected at

x = 1 and at the point whose

abscissa is x. Restrict x

arbitrarily to have only values

greater than zero.

There is no simple formula

that gives the area of the shaded

region; however, the shaded region

will be used to define a function

just as in the two pevious examples. The new function is known

as the logarithm of x; it is denoted by y = log X.

The following definition describes the logarithm function as a

correspondence between x and y.

Figure 9-1e. The shaded
region is used to define
the logarithm of x.

Definition 9-1.. The logarithm function is defined for all

x > 0 by the following correspondence between x and y.

(a) For each x >.1, the corresponding value of y is the

area of the region bounded by the x-axis, the hyper-

bola y = k/x, and the vertical lines at 1 and x.

(b) For x 1, the value of y is O.

(c) For each x such that 0 < x < 1, the value of y is

the negative of the area bounded by the x-axis, the

hyperbola y = k/x, and the vertical lines at 1 and

at x.

(sec. 9-1)
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Fig. 9-1f. shows the graph
of y log x. It follows from

the definition that the graph

lies below the x7axis for
o < x <1, crosses the x-axis
at x 1, and lies above the

x-axis for x > 1. Furthermore,
the curve rises as x increases.

For each fixed value of k,

y k/x is a hyperb,la and the
Figure 9,1f. Graphcorrespondence described in of y = log x.

Definition 9-1 defines a logarithm
function. Thus it is clear that

a logarithm function can be de-

fined for each fixed value of k, However, in this course only
those logarithm functions which arise from positive values of k
will be considered. Fig. 9-le shows a hyperbola for k = 1, and
Fig. 9-1f shows the graph of the corresponding logarithm function.

The properties cf all logarithm functions will be derived
simultaneously. Two of the logarithm functions are especially
important in mathematics and in applications to other subjects.
If k = 1, the corresponding logarithm function is known as the
natural logarithm function. It is denoted by y = ln x. The
natural logarithm function has special properties which make it
useful in theoretical work in mathematics and ito applications.
Another special choice of k gives a logarithm function whose
value is 1 at x = 10. This logarithm function is called the
common logarithm function. It ir denoted by y = log 10)( The
common logarithm function is exceedingly useful in numerical cal-
culations, due to the fact that our number system makes use of
base ten. Tables of values of natural logarithms and common log-
arithms are included in most standard books of tables.

I

[sec. 9-1]
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Fig. 9-1g shows the graph of y = l/x from x = 0.65 to

x = 1.00, and Fig. 9-1h shows the graph of the same hyperbola

from x = 1.00 to x = 1.35. These figures can be used to com-

pute a rather accura4 itural logarithms. Observe first

of all that each sr these figures has an area (

0.0001. A good apt to the area under the hyperL an

be obtained by counting squares. As an example, compute ln 1.05.

Fig. 9-1h shows that the number of whole squares under the curve

from x = 1 to x = 1.05 is 485; thus, ln 1.05 is approxi-

mately 0.0485. A more accurate value can be obtained by adding

on the areas of the parts of squares that lie under the hyperbola.

In this case the curve crosses five squares, and the graph indi-

cates that the parts of their areas that lie under the hyperbola

amount to slightly more than two whole squares. Thus, a more acc-

urate value for ln 1.05 is 0.0487. Tables show that the value

of ln 1.05 correct to five decimal places is 0.04879. (See

Mathematical Table from Handbook of Physics ana Chemistry.) A

similar calculation for Fig. 9-1g shows that the approximate value

of ln 0.95 is -0.0513; the value given by five-place tables is

-0.05129.

The graph of y = ln x is shown in Fig. 9-1i. It contains

the two points (0.95, -0.0513) and (1.05, 0.0487) whose coord-

inates were computed from Figs. 9-1g and 9-1h. It is obviously

necessary to extend the graph of y = 1,/x both to the left and to

the right in order to obtain enough points to plot the graph of

y = ln x shown in Fig. 9-11.

Li
[sec. 9-1]
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It can be shown by counting squares that ln 10 is approxi-

mately 2.3 (a five-place table gives this value as 2.30259).

Experience has shown that one of the most useful logarithms is the

common logarithm loglox; its value is 1 at x = 10. To show

how points needed to draw the graph of y = loglox can be obtained

let us consider once more the hyperbola y = k/x. (See Fig. 9-1j).

Every ordinate on the graph of this equation is k times the
1

corresponding ordinate on the graph of y =--. (Notice that the

height at each x f,r y = ln x is approximately 2.3 times

the height of th, ordinate for the graph y = loglox).
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Figure 9-1j

Tb:--7ffe, for any interval 1 tcs x (x > 0), the area

under of y = 7 is k time :he corresponding area

1
under t ap 7. of y = 7. In Fig. this means that the-area

under a. is k times the area ..,nder are PQ.

1_ 7
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But, by our definition, these areas are log x and ln x respec-
tively, therefore we can write

9_i log x = k ln x,

where k is the constant in the equation of the hyperbola used in
defining log x. Clearly, the value of log x depends on k. To

find an approximate value of k which makes log 10 equal to one,
we substitute x = 10 in (9-1) and make use of the fact that
ln 10 is approximately 2.3 as shown in Fig. 9-11:

1
1 k X 2.3 or k

2.3'

1Of course, .-30259 is a better approximation because it is based

on the more accurate value of ln 10 given above. The exact
value is

1

In 10*

This number is denoted by M; it is an irrational number (simi-
lar tolT). Its value, correct to 20 decimal places, is

9-la M 0.43429 44819 03251 82765.

The common logarithm of x, denoted by loglox, is thus the

area under the hyperbola

9-lb =

from 1 to x. The values of loglox can be computed in the

same way that the values of ln x were computed. Fig. 9-1k con-
tains the graph of y = M/) from x = 1.00 to x = 1.35. Areas

under this curve can be computed by counting squares. The graph
of y = loglox is shown in Fig. 9-1i, and Table 9-1 contains a

brief table of values of loglox. It follows from the definition

of common logarithms that

9-1c loglox = M ln x.

;
[sec. 9-1]
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As a matter of notation, y = log x will be used to denote

the general logarithm function obtained from the hyperbola

y = k/x, where the value of k is general and unspecified except

that k > 0.
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Table 9-1. A Brief Table of Common Logarithms.

loglox

0.00001 -5

0.0001 -4

0.001 -3

0.01 -2

0.10 -1

1.00 0.0000

1.50 0.1761

2.00 0.3010

2.50 0.3979

3.00 0.4771

3.50 0.5441

4.00 0.6021

4.5o 0.6532

5.00 0.6990

5.50 o.74o4

6.00 0.7782

6.50 0.8129

7.00 0.8451

7.50 0.8751

8.00 0.9031

2 0

[sec. 9-1]

x loglox

8.50 0.9294

9.00 0.92

0.9777

10.00 1.0000

10.50 1.0212

11.00 1.0414

12.00 1.0792

13.00 1.1139

14.00 1.1461

15.00 1.1761

16.00 1.2041

17.00 1.2304

18.00 1.2553

19.00 1.2788

20.00 1.3010

25.00 1.3979

30.00 1.4771

35.00 1.5441

40.00 1.6021

45.00 1.6532

50.00 1.6990
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Exercises 2m1

1. Use the graphs in Figs. 9-1g and 9-1h to ---Amate value

of ln x for those val,l's of x listed i

of the following table. Compare your estimated values with

the correct values given in the last column. It should be

observed that these lOgarithms are natural logarithms rather

than the common logarithms given tn Table 9-1.

x Estimated ln x Correct ln x

0.70 -0.35667

0.82 -0.19845

0.90 -0.10536

1.12 0.11333

1.18 0.16551

1.23 0.20701

1.24 0.21511

1.26 0.23111

1.28 0.24686

1.29 0.25464

1.31 0.27003'

1.32 0.27763

1.33 0.28518

1.34 0.29267

[sec. 9-1]
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2. Use 11 Fig. 9-1k to e: lf'.e the iu of loglox

for thob.. DC x listed in the first column of the

following table. Compare your estimated values with the

correct values given in the last column.

x Estimated logiox
,

C orrect loglox

1.12 0.0492

1.16 0.0645

1.18 0.0719

1.21 0.0828

1.23 0.0899

1.24 0.0934

1.26 0.1004

1.28 0.1072

1.29 0.1106

1.31 0.1173

1.32 0.1206

1.33 0.1239

1.34 0.1271

3. Draw an accurate graph of the common logarithm function

y = loglox on a large sheet of graph paper. Use Table 9-1

as the table of values for drawing the graph. Compare your
graph with the graph of y = loglox in Fig. 9-11.

92

[sec. 9-13
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4. Use sheets of graph paper similar to those in Fig. 9-1g and

9-1h to eXtend the graph of y = l/x both to the right and

to the left. The class might undertake a cooperative project

of drawing the graph from x = 0.1 to x = 10. This graph

can be used to make a table of logarithms for all numbers

from x = 0,1 to x = 10. Observe that the logarithms ob-

tained are natural logarithms and not common logarithms as

given in Table 9-1.

5. Use sheets of graph paper similar to those in Fig. 9-1g and

9-1h to extend the graph of y = M/x in Fig. 9-1k both to

the right and to the left. The class might undertake as a

cooperative project the task of drawing the graph from

x = 0.65 to x = 10. This graph can be used to make a table

of common logarithms for all numbers from x = 0.65 to

x = 10. Compare the values of loglox obtained with the

values given in Table 9-1.

6. If ln x is the natural logarithm of x, then M la x

loglox. Show that this relation can be used to compute a

table of common logarithms from a table of natural logarithms.

7. Determine k in the equation of the hyperbola y = so that

log 2 = 1. We call this log function log2x. Find the

value of logn 1, log2 3, log2 4, log2 8, log2 and

1
log2 7.

[sec. 9-1]
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9-2. An Important Formula For Log x. The purpo!;e of this section

is to prove a theorem which states an important property of log x.

Theorem 2ma. If y = log x is the logarithm function de-

rived from the hyperbola y = k/x, and if a and b are any two

positive numbers, then

9-2a log ab log a + log b.

Before we undertake to prove Theorem 9-2 let us verify Equa-

tion 9-2a in a number of special cases. Table 9-2a gives the

values of logloab and (logloa + loglob) for a number of diff-

erent values of a and b. In three cases the two numbers differ

by one in the fourth decimal place. A small difference of this

size is to be expec*ted occasionally since the logarithms in our

table are correct to only four decimal places.

Table 9-2a. Comparison of logloab and logloa + loglob.

a b logloab loglos + loglob

1.50 2.00 0.4771 0.4771

2.50 3.00 0.8751 0.8750

1.50 3.00 0.6532 0.6532

2.00 2.50 0.6990 0.6989

3.00 4.00 1.0792 1.0792

6.50 2.00 1.1139 1.1139

3.00 ,. 00 1.1761 1.1761

4.00 4.00 1.2041 1.2042

2 1
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Fig. 9-2a. The area under the hyperbola y = k/x from x = a to

x = ab is equal to the area under the hyperbola from x = 1 to

x = b.

Consider the proof of Equation 9-2a. The graph on the left in

Fig. 9-2a shows that the area under the hyperbola from x = 1 to

x = ab is log ab, and that this area is equal to the area from
x = 1 to x = a plus the area from x = a to x = ab. Since

the area from x = 1 to x = a is log a by definition, the

proof of Equation 9-2a will be complete if we can show that the

area under the hyperbola from x = a to x = ab is the same as
the area from x = 1 to x = b. This fact will be proved in a

special case; the proof in the general case can be given in the

same way.

The proof will be given for a = 2 and b = 3. In this case

we are asked to prove that the area under the hyperbola y = k/x

from x = 2 to x = 6 is equal to the area from x = 1 to

x = 3. Approximate the latter area by four rectangles as shown in

2 5
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2 3 4 5 6

Figure 9-2b. Approximate

area under the hyperbola

y from x 2 to x 6.

Figure 9-2c. Approximate area
k .under the hyperbola y =

from x 1 to x = 3.

Fig. 9-2c, and approximate the former area by four corresponding.
rectangles as shown in Fig. 9-2b. The altitude of each rectangle
can be found by calculating y from y k/x for the appropriate
value of x. The calculations are shown in Table 9-2b. Observe
that the area of each i'ectangle in Fig. 9-2b is exactly equal

Table 9-2b. Computation of the Areas in Figs. 9-2b and 9-2c.

Fig. 9-2b Fig. 9-2c

Rec-
tangle

Length
of Base Altitude Area Rec-

tangle
Length
of Base Altitude Area

1

2

3

4

1

1

1

1

k
7

k
5

k
7

k
5

k.r
k
5

k
7
k
5

1

2

3

4

0.5

0.5

0.5

0.5

k k

k
5

k
7
k
5

k
r 5

k
22
k

r:3

(sec. 9-2)
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to the area of the corresponding rectangle in Fig. 9-2c. Thus the

sum of the areas of the rectangles in Fig. 9-2b is equal to the

sum of the areas in Fig. 9-2c. The same result will be found re-

gardless of the number of rectangles used to approximate the areas.

If a large number of rectangles is used, the sum of their areas is

very close to the area under the curve. From these considerations

it follows tnat the area under the hyperbola y = k/x from x = 2

to x = 6 is equal to the area from x = 1 to x = 3.

A proof of Equation 9-2a for-the general case can be given in

exactly the same way.

Equation 9-2a has many applications. For example, Table 9-1

does not give 1og1028, but it does give 1og104 and 1og107.

Therefore, by Equation 9-2a,

.1og1028 = 1og104
1og107

0.6021 0.8451

1.4472.

Observe also that 11 = ( 1-11)(N/7571). Therefore,

so that

log 11 = log10,/II 1og1047:

logloNia = 7 1og1011

17 (1.0414)

0.5207.

2 7
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Exercises 9-2,.

1. Verify Equation 9-2a in a number of special cases by complet-

ing the following table. Use the common logarithms given in

Table 9-1.

a b ab logloab -logloa + loglob

3.00 3.00

3.00 2.00

4.00 2.50

5.00 4.00

5.00 7.00

3.00 6.00

6.00 5.00

5.00 8.00

5.00 10.00

4.00 3.50

5.00 9.00

L Use Equation 9-2a and Table 9-1

the following logarithms:

to calculate the values of

(a) 1og1021 (g) 1og1032 (m) log1044 (s) 1og1057

(4)
1og1024

(h)
1og1033 (n) log1048 (0 log1063

(c) log1022 (i) 1og1034 (0) log1049 (u) 1og10125

(d) 1og1026 (j) 1og1036 (p) 1og1051 (v) 1og10144

(e) 1og1027 (k) 1og1038 (q) 1og1054 (w) 1og10250

(f)
1og1028 (/) log1042 (r) 1og1056 (x) 1og101000.

2
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3. Prove that log a
2

=2

following logarithms:

log a. Use this fact to compute the

(a) logloyrf ( ) log102.25 (k) 1og10256

(b) log10./5 (g) log106.25 (P) 1og10441

(c) log10./7 (h) log1064 (m) 1og10196

(d) logloy7 (i) log1081 (n) 1og10289

(e) log10110 (.1) log10169 (o) 1og10576

4. Prove that log abc = log a + log b + log c

log a
2b = 2 log a + log b and

log a3 = 3 log a.

Use these facts to compute the following logarithms:

and thus that

(a) 1og1042

(b) 1og101001

(c) 1og10255

(d) 1og1026.25

(e) 1og10(3.5)2X7

(f) log10147 (k) log10 ,\37170

(g) 1og10126.75 Ci) log103/5-7

(h) log10343 (m) log10 ,31277

(i) 1og101728 (n) log10 ,./r1000

(j) log10 (o) log10Z/110.25

5. Use the definition of log x as an area to show that

k(x-1)
< log x < k(x-1) where k > 0 and x > 1.

Is this inequality true when 0 < x < 1?

2 9
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Properties Of log_x.

Corresponding to hype.7.7bola 7 = ther.e .is a 101.7.=ithm

y = bJ.s funItion wa.F. a(fLned in Section 9-i.
-iing to Defl., 9-1, Log x ftr aci k > 0 has the
dng propertier

log 1 = 0,

log x > 0, x.> 1.

log x < 0, 'x <

Furthermore, i- -,..ras shown in Sect: 9-2 that

9- log(x1 x2) = log xl + log x2.

In this section some additional properties of the logarithm
function will be established.

1In Equation 9-3b let xl be x, and let x2 be R.. Then

log x(i) = log x + log

1NBut since x(1 = 1, and log 1 = 0 by Equation 9-3a, the last

equation becomes

10 = log x + log ye.

Thus it follows that

19-3c log 7 = - log x.

x
1Next, consider the logarithm of --. This quotient can bex2

thought of as a product. Thus,

x
1

= 2C1 kr.)
2

Then by Equations 9-3b and 9-3c,

x,
1log5it = log xl + log R7.,

2
or

x
19-3d log-- = log xl - log x2.x2

[sec. 9-3]
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It s i next that lf n positive intesr.

then,

9-3e log xn = n log x,

log = - n,log x.
x
n

.The f. ent in Equation 9-3e follows from repeati

applicatlon .::uatLon 9-3b, for

log x
2 = log(x x)

= log x + log x

= 2 log x;

log x3 = log(x2 x)

= log x2 + log x

= 2 log x + log x

3 log x.

The firs': statement in Equation 9-3e can be established by

continuing I= -,niz fashion. The second statement follows from the

first stateme= amd from Equation 9-3c, for

log = - log x
n

xn

= - n log x.

The symbc_ -a; where x > 0 and q is a positive integar

means a positL number whose q
th

power is x. Thus

( ,c,1175T)cl = x. For example, ;/-8T= 2, VIZ = 2, V-61-7

3 frz . 5. It will now be shown that if p. and q are any pos-

itive integer:3, 7.ner.

9-3f log(q./Tc) = 2 log x.

31.

(sec. 9-3)
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It will be shown first that log VTR'

statement in Equation 9-3e,

log( V5E)cl = q log

or

. By the first

log x = q log 5,r7F.

By solving this equation for log 4°,,I/Y, we o 7ain

log 2rT= log x.

From this result and the first statement J.:. Eauation 973e it
follows that

log ( (1/ii)P log x,

and the proof of Equation 9-3f is complete.

The next property of log x to be established is the
following:

9-3g If xi < x2, then log xi< log x2.

This property follows from the definition of log x (Definition
9-1); for, if xl < x2, the area under the hyperbola y

from I to x
1

is less than the area under the curve from 1 to

x
2

.

A similar argument establishes

9-3g' If log xi < log x2, then xi < x2.

Note that statements 9-3g and 9-3g1 can be eriTdressed as one
statement as follows:

xi < x2 if and only if log xi <

3 2
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The next prope: of

477

be establis- s the

)

follow-

If IJ.pg x_ - log ;L-. :hen x = x
2'

are only three ;:ossitities: either x_ < xl > x
2'

or = x2. But the firs': twc are impossible, since xl < x2

implies log xl < lo7 x2, ind xl > x2 implies log xl > log x2

Equation 9-3g. Thl'3, X, < X2 and xl > x2 must be rejected

since both lead to contradictions. Therefore, xl = x2, and the

proof is complete.

Again, a similar argument establishes

9-310 If xi = x2, then log x
1
= log x

2

The final property of log :c which is desired fz the following:

9-31 The graph of y = log x is a continuous curve.

This follows from the fact that the graph has no hreaks or jumps

in it. An important consecuence of this propert7 is the following:

If x
1
< x

2
and c is any number such that log x

1
< c < log x

21

then there is a number xo such that x1 < xo < x2 and

log xo = c.

Tne following is a summar7 of the properties of log x:

9-Ta log 1 = 0,

log x 0 x 1,

log x < 0 0 < x < 1.

9-3b x: and x
2

are any two positive numbers, tnen

_La!'

.x
2'

= log x
1

+ log

=
X

3

[sec. 9-3]



If x
1

and x aye any two positive numbers, then

lo = log x
1
- log x2.

I n is y positive integer, then

log = n log x,

log = -n log x.

If p arr_ q are any two positive integers, then

log x)P = 2. log x.

9-3g If xi < x2. then log xl < log x2.

9-3g' If log xl < log x2, then xl < x2

< x2 if and only if log xl < log xd

9-3h If log xl = log x2, then xl = x2.

7=-3h1 If xl = x2, then log xl = log x2

= x2 if and only if log xl . log

9-31 The of y = log x is a continuous curve.

Some az...I'Liza:I= of these properties of the function log x

be illustrai ay examples:

ExamtLe 3a. Us-.1E: Table 9-1 to find the following

zarlthms

(a) (b)

3 1
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11
2

-(a) ILL1c = log10ll 2 - Log
10

17 (9-3d)

-1C-L2 = 2 log
10

11 (9-3e)

11 2

11:) 17
= 2 log 11

10 g101

1.0414) - 1.2304

C.8524

(b) Acc:7.a1ng to (9-30,

log10(,(3)5 1og105

4(o:699o)

:1.1650

a3bExample 9-3b. If _ .--ress log N in terms of the
vic

logarithm of a, b, ant c.

a3b
Solution: lc-I: = log a3 log 177

= log a3 + log b - log,/ c

= 3 log a + log b log

1Example 9-3c ,:olve for x: - log x 1og 3 log 53

Zolution: lag K 3 loE 3 = 3 log f

log = 3 log 5 - 3 log 3

lo = log 53 - log 33

, 53lo x = J.og

3

x -
27
125

3 7
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Example *-3d. Solve for log (x-3) t Log = log 28

Solution: Note that log a i2 not defined when a 0. This
means that we must nave (x - 3) > 0 for our ecuation to be mean-
ingful. We can write log[(x-3)x - log 28. Since xi = x2 if log

x
1
= log x2, we ha.7e. (x-3)x = or x2 - 3x - 28 = 0. The roots

of this quadratic a.2.e found to be -7 and -4. We ob-
serve that 7 sat.f.Efies the original equation and that -4 must

be rejected for the reason we have Lndicated.

Exercises 9-3.

1. ,Use Table ar...1 the properts of log _:-,tated in this_

section to :_nd 7.:he

(a) logio lE logic
v(77-

(b)
1Og10' (t) :logio

m, i-
(c) 1og104 x (5.5)

3

L5

(d)
1.50

°10 e.

(e) logio (1,5;

(f) logio

[sec.

3
3
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2. Find the value of 2 x 7 by the use of logarithms.

Solution: By Equation 9-3b and Table 9-1,

1og10(2 x 7) =
log102 + log 107

0.3010 i 0.8451

1.1461.

Table 9-1 shows that

log1014 1.1461.

It follows from Equation 9-3h that 2 x 7 = 14.

3. Find the value of
2.50 x 18.00

50
by using logarithms.

4.

15 x 8
4. If - , find N by means of logarithms.

3

5. Express the logarithms of each of the following expressions

in terms of the logarithms of the letters involved as in

Example 2:

(a) PQR

(b) P( 3.N7)2

(c) 7(i5

(d) N R

3 7
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6. Solve each of the following logarithmic equations for x:

(a) log10 x = 3 loglo 7

(b) log10 x log10 13 = log10 182

(c) 2 log10 x log10 7 = loglo 112

(d) log10 (x-2) + log10 5 2

(e) log10 x + log10 (x + 3) = 1

(f) log10 x = - log10 64

(g) log10 (x-2) + log10 (x + 3)
= log10 14

7 Write without "log":

(a) log10 V = log10 4 + log10 V. 4.,3 log10 r - log10 3

(b) logio P log10 t + loglo g

1
(c) log10 S = [log10 s + log10 (s-a)

+ log10 (s-b) + log10 (s-c

S. Show by logarithms that, if a > 0, and p, q, and n are

natural numbera,,then

(a) 9v/aP

(o)
nq," an

Hint: Use Property 9-31

38
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9. Express as a single logarithm:

(a) log10 x + log10 y -
log10 z

(b) log10 (x + 3) - log10 (x-2)

(c) 4 log10 t - 3 log10 s

(d) log10 x - log10 y

(e) log10 2 + log10 x + 3(1og10 x - log10 y)

(f) - log10 x + 4 log10 (x-2) + logio x2

*10. Suppose we denote the area under the curve y = 3x
2

in the

first quadrant between the ordinates at 1 and x as "lug x"

Are. there .any properties of log x which are also true for

"lug x"? In particular is it true that lug ab = lug a +

lug.b?

9-4. The Graph of y = log x.

Fig. 9-li contains graphs of y = ln x and y = loglox.

These graphs exhibit many of the characteristic features and im-

portant properties of all logarithm functions. This section will

be devoted to a study of the properties of the graph of the general

logarithm function y = log X.

The first important property of the graph of y = log x is

this: The ordinate y always increases as x increases. It was

proved in 9-3g that, if x1 < x2, then log xi. < log x2. The fact

that y always increases as x increases on the graph of

y = log x is a consequence.

It follows from the definition of log x that log 1 = 0 (see

also Equation 9-3a), Thus the graph of y.= log x crosses the

x-axis at (1,0). The graph does not cross the x-axis at any other

point because .y always increases as x increases.

39
[sec. 9-4]
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It ha_-: ceen expl2ined already that the graph of y = log x
is a continucas cur-;e (see Property 9-3i). The graphs of
y = ln x and y loglox in Fig. 9-li are continuous curves, and
the graph 7f every lagarithm function y = log x has this same
property.

Anor..cr Impor7a= property of the graph of y = log x is the
following:: A- x increases without limit, y also increases
without limit By 9-3g, we know that if xi < x2, then log
xi < log x2. _lince 1 < 2, log 1 < log 2, and 0 < log 2.

Consider 1: 21. Slaace log 2n = n log 2, it follows that
log 2n incr -s without limit as n increases without limit.
Thus, the pa_ , (2n, n log 2) is on the graph of y = log x,

.and the ord'-=:.= of rhis point is arbitrarily large if n is suffi-
ciently larre. Since y always increases as x increases, it
follows taa7, y fncreases without limit as x increases on the
graph of - i x.

A related property is the following: As x decreases
toward zea-a, y decreases without limit on the graph of y = log x
Another -4-ay to state this property is the following: the graph of

y = log x L asymptotic to the negative y-axis. It follows from
1Equation 9-5,-, that log -7 = - n log 2.
2-

Thus, the paint (=t, - n log 2)
2

is on the graph of y = log m.

As n increases without limit,

the abscissa this point de-

creases towart zero, and the

ordinate Lie=eases without limit.

Since y always decreases as x

decreases, the Eraph of y = log x

is asymptc-7c t the negative

y-axis as .17tated.

ThefLaal property of the

graph of y - log x is the

following: 1=1 c is any real

number, then the graph of

[sec. 9-4]
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y = log x crosses the line y = c at one and only one point.

This property is an important consequence of the fact that the

graph of y = log x is continuous, and Fig. 9-4a gives a

graphical proof of it. The figure shows the graphs of. y = log x

and y = c. If the graph of y = log x crosses the graph of y = c

once, then the curved line cannot cross the straight line a second

time because the ordinate y on the graph of y = log x always

increases as x increases. Thus, the proof will be complete if

it can be shown that the graph of y = log x crosses the line at

least once. It has been shown already in this section that there

is a point on the graph of y = log x above the line y = c and

another point below this line. Since the graph of y = log x is

continuous, the graph crosses the line in passing from the point

below the line y = c to the point above this line. The proof is

complete.

Another statement of the property proved in the last para-

graph is the following: If c is any real number, then there is

exactly one positive real number xo such that log xo = c.

The following is a summary of the properties of the graph of

y = log x established in this section.

9-4a On the graph of y = log x, the ordinate y always

increases as the abscissa x increases.

9-4b The graph of y . log x crosses the x-axis at x = 1

and at no other point.

9-ac The graph of y = log x is a continuous curve.

9-4d As x increases mithout limit, y also increases with-

out limit on the graph of y log x.

9-4e As x decreases toward zero, y decreases without limit

on the graph of y = log x.

q-af If c is any real number, then the graph of y = log x

cror;ses the line y . c at one and only one point.

[sec. 9-4]
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Exercises 9-4,

1. Find the coordinates of a point P on the graph of
y = loglox which satisfies each of the following conditions:

(a) The ordinate of P is greater than 100.

(b) The ordinate of P is less that -5.

(c) The ordinate of P is greater than 1 and less than 2.

Hint for (a): Recall that log1010 = 1 and that

log1010n = n 1og1010.

2. Draw an accurate graph of y = loglec on a large sheet of

graph paper (see Exercise 9-1-3). Use this graph to find the
approximate solutions of.the following equations: (Note that
graph must extend to at least x = 100).

(a) Mg10x = .5

(b) log10x = .8

(c) 1og10X = -1

(d) loglox = 0

(e) log10x = -2.5

(f) loglox = 1.2

(g) loglox = 2

(h) loglox = Nr1T

(i) loglox =

(J) loglOx

3. We label the log function whose value at 10 is 1 with the
symbol log10 x. Similarly, the log function whose graph

passes through the point (t,l) is called logt x. Find the

value of k associated with logt x. Show also that

logt tn = n, where n is any positive integer.

4 2
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If the graph of y = log x passes through the point (t,$)

wnere t > 1, show that log tn = ns for any positive

integer n. Also find the value of k such that the graph

of y = log x passes through (t,$).

5. Show that there exists a number x such that log10 x

Show also that this number is greater than a000 and less

than 1000 ,./-TET.

6. Sketch a curve which has the property that it is symmetric to

the graph of y = log x with respect to the line y = x.

Suppose unat the equation of this new curve is y = E(x).

(a) Re-state properties 9-4a, 4b, 4c, 4d as they apply

to the graph of y = E(x).

(b) Which of the following are true?

(1) The functions log x and E(x) are so related

that the domain of either function is the range of

the other.

(2) If P(a,b) lies on either graph, then the point

Q(b,a) lies on the other.

9-5. Tables of Common Logarithms; Interpolation.

It was shown in Table 9-1 that the common logarithms of a few

numbers are integers; for example, log100.01 = -2, log101 = 0,

and log1010 = 1. The common logarithms of some numbers are

1
rational fractions; for example, log10 yrrU (see Equation

9-30. The common logarithms of many numbers are irrational

vr'iT
, numbers; 'for example, the number- 10 will be defined later,

and it will be shown that log1010 is the irrational number

The usual tables of logarithms express approximate values

of the logarithms of numbers in decimal form correct to four,

five, or seven decimal places.

[sec. 9-5]
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Four-place tables will be used in this section and the next.

Table 9-5a. Approximations to a Few Common Logarithms and Their
Representation in Standard Form.

x
loglOx loglox in Standard Form

0.00231 - 2.6364 3 + .3636
0.0231 - 1.6364 - 2 + .3636
0.231 - 0.6364 - 1 + .3636
2.31 0.3636 0 + .3636

23.1 1.3636 1 + .3636
231.0 2.3636 2 + .3636

2310.0 3.3636 3 + .3636
23100.0 4.3636 4 + .3636

It has been shown that the logarithms of numbers greater than
1 are positive, and that the logarithms of numbers less than 1
are negative. The second column of Table 9-5a gives the common
logarithms of numbers listed in the first column. The third
column shows the logarithms written in standard form. It will be
observed that loglox, when written in standard form, is the sum

of an integer (positive, negative or zero) and a non-negative
decimal fraction less than 1. The integer is called the charac-
teristic of the logarithm, and the decimal fraction is called the
mantissa. Tilus, the standard form for writing the common log-
arithm of a number a is

Definition 9-5a. log a = n + m, where
n is a positive or negative integer or
zero, and

0 m < 1.

We illustrate the meaning of this definition with some examples:

Example 9-5a. Find the characteristic n and the mantissa
m of log10 a for each of the following values:

(a) logloa = .4829

[sec. 9-5]
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Solution: It is important to observe that the characteristic

n can be zero as it is in this case. We can write:

loglOa
4829 = 0.4829 = 0 + .4829 where

n = 0 and m = .4829. Note 0 m < 1.

(b) logloa = 3.3122 -,- 1.5040

Solution: Clearly logloa = 4.8162 = 4 + .8162, therefore,

n = 4 and m = .8162. Again, 0 m < 1.

(c) logloa = -2.4163

Solution: If we write logloa = -2 + (-.4163), we observe

that the decimal fraction is negative and therefore cannot be re-

garded as a mantissa which, by defir"ion, is a non-negative number

less than one. In this case log a is larger than -3 and less

than -2. This means that logloa can be expressed as -3 plus

some positive number less than one. This positive number is our

mantissa m.

1°g10a
-3 + m or -2.4163 . -3 + m. m = .5837. This

gives logloa = -3 + .5837. We see that n = _ 3 and that

0 m < 1. Note that we could have obtained this result more

quickly by adding.and subtracting 3:

logle -2*
4163 = -2.4163 + 3 - 3 = .5837 - 3 = -3 + .5837.

Example 9-5b. Find the characteristic n and the mantissa

m for

logloa if 5 logloa = 2 loglox - 3 logloy, where

loglox = 0.1962, and logloy = 0.7343 - 2..

(sec. 9-5]
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Solution: 5 logloa = 2 X (0.1962) - 3(0.7343 - 2)

= 0.3924 - 3(-1.2657)

= 0.3924 + 3.7971

= 4.1895

logloa = 0.8379. n = 0 and m = .8379.

0 m < 1

Exercises 9-5a

Find the characteristic and the mantissa for logloa in Exercises

1-12:

1. logloa = 3.8383

2. logloa = .5332

3. 2og10a = - . 4431

4. dogle 2.2136

loglOa -5

Hint: logloa = -1 -

6. logle . -1.3166

7. logloa = .2727 - 3.8122

8. logle . .4177 + 1.7832 - 5

9. logle 0926

10. 3 logloa = -4

11. 2.6183 + logloa = 1.2336

12. logloa = [3 loglox + loglg - log10 z] where

loglox = 0.3163, logloy = -.8887, 1og10z = 7.4175

4 id
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log10a, a > 0. Is the following statement true?: If

logloa = 0, then m = 0 and n O.

14. Are these statements true?

(a) If logloa and loglob have the same mantissas, then

they differ by an integer.

(b) If log10a. and loglob differ by an integer, th,ii xeir

hantissas are equal.

Let 1..s nc:w consider 7:1,:o positive numbers whose decimal

representation:, differ only in the paaltion of the decimal:-,00int.

We see that -73.18 and .07318 are a pair of numbers of this type.

In this case, ,e note that 73.18 = .07318 x 103.

The sample of logarithms given in Table 9-5a suggests zhat the

common logarithms'of any two numbers whose decimal represermations

differ only in the positions of the decimal points have the same

mantissas. This fact will be proved in the following theorem:

Theorem 9-va. If a and b are any two positive numbers

whose decimal representations differ only in the positions of the

Jecimal points, then logloa and loglob have the same mantissas.

The proof employs the properties of logarithms established in

Section 9-3. For convenience, assume that a > b; a similar proof

can be given if b > a. Then there exists a positive integer n

such that

a = 10
n
b.

Recall that (x1 x2)= log xl log x2, log xn = n log x, and

log1010 = 1.
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Then,

logloa = 1og10(10nb)

= 1og1010n + loglob

= n 1og1010 + 1

= n + log10b.

Thus, logloa is obtaIned by adding the integer n to log10b,

-ar-ri the mantissas of logloa and loglob are the same. The proof

is complete.

It follows from Theorem 9-5a that the logarithms of all num-
.:ber.s can be obtained from a table which gives the logarithms of
:numbers from 1 to Ia. Common logarithms are-preferred to nat-
AmIllogarithms for ordinary computation because of Theorem 9-5a.
The:mantissas of common logarithms are obtained from a table, and
characteristics are-,obtained by inspection as indicated in the
next Theorem (9-5b).

Before we consider this theorem, let us recall the meanings
that have been assigned to such expressions as 10°, and 10-3

and 10-n where n is a positive integer. We have long known
that 103 x 102 . (10 x 10 x 10) (10 x 10) = 105 and, more gener-
ally, that

(i) 10m x 10n . 10m+n, where m and n are positive integers
called exponents when used in this way.

Zero and negative integral exponents were defined so that this law
(i) remains true. Suppose n = 3 and m = 0. We have

103 x 10° = 10 = 103. Evidently 100 must be assigned the
value 1 in order for the statement to be true. We can write

10
0

= 1.

48
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Suppose next that m - 3 and n = -3. According to our ru_Le,

we have

10 x 10 100 1.-3 10

But 103 x 1 = 1. Therefore, 10-3 must be interpreted as
103

1 in order for (i) to remain true for negative integral ex-
10'

ponents. We have then 10-3 . 1 and, in general,
10

10-n -
1 where n is a positive

lon

integer. In fact, for any real number x / 0, we have

X-n
1 where n is a positive integer.

x
n

We note that Equations 9-3e can now be written as a single equation:

9-5b log xn n log x for any integral value of n Provided

x > 0.

The use of zero and negative integerr, as exponents will be

illustrated ',1:y examples:

Example 9-5c. Express in decimal form:

(a) 10-5

(b) 10° x 10-3

(c) 416.2 x 10-5

Solutions:

1 1
(a) 10-5 .

10
D 100,i-00

0.00001

(b) 10° x 10-3 = J. x 1000
= 0.001

(c) 416.2 x 10-5 . 416.2 x _ 0.004162
1001000

4
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Example 9-5d. Supply the appropriate e=Dnent:

(a) 0.00001 = 10x

(b) 103 x 104 x 10-7 . 10Y

(c) 0.0512 = 5.12 x 10z

Solutions: The definitions indicate that :he answers are

x = -5, y = 0 and z =

This brief discussion of integral exponeats is sufficient for
our present purpose. A more complete discusalon of exponents is
found in Section 8 of this Chapter along with a number of practice
exercises.

We are now in a position to establish

Theorem 9-5b. If N is a positive number expressed in the

form 10n x k, where n is an integer and 1 k < 10, then n
is the charactristic of logic

Proof:

1. N 10n x

2. log1011 = x k)

3. log10N log10 le ±
13g10k

I. logioN = n loglok

5. 1 < k < 10

6. log10 1 <
loglOk < 1og1010

7. 0 < log10 k < 1

Hypothesis

(9-3h)

(9-3b)

(9-3e) and

log2010 1 by definition

Hypothesis

(9-3g)

log101 . 0 and 1og1010 = 1 .

8. n is the characteristic of loglioN by definition (9-5a)

Q.E.D.
5 0
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Examples will show how this Theorem can be applied as well as

the significance of our preliminary note on zero as an exponent.

Example 9-5e. Find the characteristic n of logloN for

ach of the following values of N:

(a) N = 4513

(b) N 0.00847

(c) N = 7.418

Solutions:

(a) N = 4.513 x 103, therefore n = 3 by Theorem 9-5b.

(b) N 8.47 x 10-3; .*. n = -3.

(c) N = 7.418 x 1 7.418 x 10°; .*. n = O.

Example 9-5f. If we know that the characteristic of

logloN is 2, and that the sequence of digits in N is 4821,

locate the decimal point in N.

Solution: In our formula N = 10n x k, we have k

and n = 2. .*. N = 4.821 x 102 = 482.1

. 4.821

Exercises 9-5b (Oral)

1. Give the characteristic for logloN for each of the follow-

(0 10-8 x 6.32

(g) 471.5 x 104

(h) 0.0063 x 103

(i) 6315 x 10-7

(j) 105 x 103 x 10-2

ing values of N:

(a) 43.16

(b) 763,900

(c) 7.732

(d) 0.7732

(e) 0.000085

5 1.
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2. In each of the following cases we are given the sequence of
digits in I1 and the characteristic of logle. Locate the

decimal point (find N) in each case.

Sequence of Digits in N Characteristic of logle

(a) 77113
5

(b) 63192 0

(c) 2083 -3

(d) 5331 -7

(d) L29003 2

3. A number in decimal form is said to have its decimal point in
standard position if the decimal point is located just to the
right of the first non-zero digi.&. Use this idea along with

Theorem 9-5b to obtain a rule for finding the characteristic
of the logarithm of any number which has been expressed in
decimal form.

4. Apply the rule you obtained in Exercise 3 to find the charac-

is given as follows:teristic of log N when N

(a) 417800

(b) 0.0031

(c) 731 x 10-5

(d) 0.001 x 0.0002

(e) between 0.001 and 0.009

(f) 4 'x 103 + 273

(g) 2.16 x 103 X 3.19 X 10-3

5 ?,
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It is now possible to explain how the logarithm of a number

is obtained from a table. Table 9-5b shows a small portion of a

standard four-place table of common logarithms. The first two

digits of the number are given in the column on the left which is

headed N; the third digit appears at the tops of the columns on

Table 9-5b. Sample Entries from a Four-Place Table of

Common Logarithms

11 0 1 2 3 4 5
,-

0 8 9

60 7782 7789 7796 78o3 7810 7818 7825 7832 7839 7846

61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917

62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987

63 7993 8000 8007 8014 8021 8028 8035 .8041 8048 8055

64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122

65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189

66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254

the right. A complete four-place table appears at the end of this

Section (Table 9-5d). These tables give only mantissas, and all

decimal points are omitted. Characteristics are obtained by apply-

ing Theorem 9-5b. Table 9-5c gives a number of logarithms that

have been obtained in the manner indicated.

If the logarithm of a number is known, the digits of the

nUmber can be found by looking in a table of logarithms If the

given logarithm is a common logarithm, look for the mantissa in the

body of a table of common logarithms and read the digits of the

number at the left margin and at the top of the column in which the

mantissa is found. The characteristic indicates where the decimal

point should be placed. Table 9-5c can also be interpreted as

giving examples of how to find the number a when logloa is

given.

5 3
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Table 9-5 . .-iome Common Logarithms Obtained from Table 9-5b.

d logloa

3 + .7910

6160. 3 + .7896

r=_2.1 1 4 .7931

6.15 0 + .7889

6.18 0 + .7910

0.619 -1 + .7917

0.0619 -2 + .7917

0.00619 -3 + .7917

619. 2 + .7917

6190. 5 + .7917

61900. 4 -,- .7917

617000. 5 + .7903

6.21 0 + .7931

The discussion of tables of logarithms will be complete as
soon as interpolation has been described. Consider the problem
of finding 1og10621.6. Inspection of the tables shows readily

that log10621.0 2.7931,

log10622.0 2.7938,

but the diglts 6216 do not occur in a standard four-place
table. Since log xl < log x2 if xi < x2,

2.7931 < 1og10621.6 < 2.7938,

but further information is needed to find 1og10621.6. An examina-
tion of the graph of y = logiox in Fig. 9-1i shows that short

sections of the graph are almost straight. More precisely, let

(sec. 9-5)



499

P1 and P2 be two points on the graph of y = loglox which lie

close together; then the segment of a straight line that joins

these two points lies very close to the graph of y = log10x.

Thus, in order to find 1og10621.6, the graph of y = loglox will

be approximated by the straight line through the points (621.0,

2.7931) and (622.0, 2.7938).

Fig. 9-5a gives a schematic drawing which explains how the

straight line is used to obtain an approximate value for

1og10621.6.

109%01'

.0007

co
ro
a)

(N.;
11

A0=1

621.0 621.6 622.0

Fig. 9-5a. Explanation of Linear Interpolation.

Observe from the figure that the logarithm increases by .0007

(the number 7 is usually called the tabular difference) when x

increases by 1.0. The triangles' ABC and ADE are similar.

Tharefore,
m(E) m(E) z .0007.

m(AB) m(AD) 0.6 1.0

and z = .00042. This number must be rounded off to .0004 since

it is not possible to obtain five-place accuracy by interpolating

in a four-place table. Finally, add .0004 to 2.7931 to obtain

1og10621.6 2.7935,

(sec. 9-5)
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The process of finding the mantissa for the logarithm of a

number whose,digits occur between two entries in the table is

called linear interpolation because a straight line is used to

approximate the graph of y =

The problem of finding log10621.6 can also be solved very

simply by finding the equation of the line through the two points
A. and E in Fig. 9-5a. The figure shows that A and E have .

the coordinates (621.0, 2.7931) and (622.0, 2.7938) respect-
ively. The equation of the line through A and E is

y 2.7931 . 2:.798 - 2.7931 (x 621.0),b22.0 - 621:0

or

y 2.7931 .0007 (x - 621.0).

The value of y when x . 621.6 is the approximate value of

log10621.6. If x = 621.6, the last equation gives y 2.7935.

Hence, 1og10621.6 2.7935.

It is often necessary to interpolate in order to find a

number when logarithm is known. For example; consider the
problem of finding x if

loglox = 1.7940.

Table 9-5b shows that

1og1062.2 1.7938

1og1062.3 1.7945,

but the mantissa 0.7940 does not occur in the table.

.30

[sec. 9-5]
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Fig. 9-5b gives a schematic diagram which indicates how the graph

of y = loglox can be approximated by a straight line in such a

way as to give a solution to the problem. Similar triangles give

the equation
0.1 2fn

.0002 76557' or 4

0

II

622 62.3

AD=0.1

Fig. 9-5b. Explanation of linear interpolation
for finding a number when its loga-
rithm is given.

Thus, z is approximately .03, and the number whose common loga-

rithm is 1.7940 is approximately 62.23.

The problem just explained can be solved also by finding the

equation of the straight line AE in Fig. 9-5b. This line passes

through the points whose coordinates are (62.2, 1.7938) and

(62.3, 1.7945). The equation of this line is

y 1.7938 = .007 (x - 62.2).

If y 1.7940 on this line, then x = 62.23. Thus, if

loglox . 3.7940, then x 62.23.
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Table 9-5d.

0 1

lo 0000 0043
11 0414 0453
12 07)2 0828
13 1139 1173.
14 1461 1492

15 1761 1790
16 2041 2068
17 2304 2330
18 2553 2577
19 2788 2810

20 3010 3032
21 3222 3243
22 5424 3444
23 3617 3636
24 3802 3820

25 3979 3997
26 4150 4166
27 4314 4330
28 4472 4487
29 4624 4639

30 4771 4786
31 4914 4928
32 5051 5065
33 5185 5198
34 5315 5328

35 5441 5453
36 5563 5575
37 5682 5691.
38 5798 5809
39 5911 5922

4o 6021 6031
41 6128 6138
42 6232 6243
43 6335 6345
44 6435 6444

6532 6542
-6 6628 6637
47 6721 6730
43 6812 6821
9 6902 6911

0. 6990 6998
7076 7084

52 71b0 7168
7243 7251
7324 7332

FOUR-PLACE TABLE OF COMNON LOGARITIDiS

2 3 4 5 6 7 8 9

0086 0128 0170 0212 0253 0294 0334 0374
0492 0531 0569 0607 0645 0682 0719 0755
0864 0899 0934 0969 1004 1038 1072 1106
1206 1239 1271 1303 1335 1367 1399 1430
.1523 1553 1584 1614 1644 1673 1703 1732
1818 1847 1875 1903 1931 1959 1987 2014
2095 2122 2148 2175 2201 2227 2253 2279
2355 2380 2405 2430 2455 248o 2504 2529
2601 2625 2648 2672 2695 2718 2742 2765
2833 2856 2878 2900 2923 2945 2967 2989
3054 3075 3096 3118 3139 3160 3181 3201
3263 3284 3304 3324 3345 3365 3385 3404
3464 3483 3502 3522 3541 3560 3579 3598
3655 3674 3692 3711 3729 3747 3766 3784.
3838 3856 3874 3892 3909 3927 3945 3962
4014 4031 4048 4065 4082 4099 4116 .4133
4183 4200 4216 4232 4249 4265 4281 4298,
4346 4362 4378 4393 4409 4425 444o 4456
4502 4518 4533 4548 4564 4579 4594 4609
4654 4669 4683 4698. 4713 4728 4742 4757
4800 4814 4829 4843 4857 4871 4886 4900
4942 4955 4969 4983 -4997 5011 5024 508
5079 5092 5105

. 5119 5132 5145 5159 5172
5211 5224 5237 5250 5263 5276 5289 5302
5340 5353 5366 5378 5391 5403 5416 5428
5465 5478 5490 5502 5514 5527 5539 55515587 5599 5611 5623 5635 5647 5658 5670
5705 5717 5729 5740 5752 5763 5775 5786
5821 5832 5843 5855 5866 5877 5888 5899
5933 5944 5955 5966 5977 5988 5999 6010
6042 6053 6064 6075 6085 6096 6107 6117
6149 6160 6170 6180 6191 6201 6212 6222
6253 6263 6274 6284 6294 6304 6314 6325
6355 6365 6375 6385 6395 6405 6415 6425
6454 6464 6474 6484 6493 650 6513 6522
6551 6561 6571 6580 6590 6599 6609 6618
6646 6656 6665 6675 6684 6693 '6702 6712
6739 6749 6758 6767 6776 6785 6794 6803
683o 6839 6848 6857 6866 6875 6884 6893
6920 6928 6937 6946 6955 6964 6972 6981
7007 7016 7024 7033 7042 7050 7059 7067
7093 7101 7110 7118 7126 7135 7143 7152-
7177 7185 7193 7202 7210 7218 7226 7235
7259 7267 7275 7284 7292 7300 7308 7316
7340 7548 7356 7364 7372 7380 7388-.7396
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9
55 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474
56 7482 7490 7497 7505 7513 7520 '7528 7536 7543 7551
57 7559 7566 7574 7582 7589 7597 7604 7612 7619 7627
58 7634 76112 7649 7657 7664 7672 7679 7686 7694 7701
59 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774
60 7782 7789 7796 78o3 7810 7818 7825 7832 7839 7846
61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917
62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987
63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055
64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122
65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189
66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254
67 8261 8267 8274 8280 8287 8293 8299 83o6 8312 8319
68 8325 8331 8338 8344 8351 8357 8363 837o 8376 8382
69 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445
70 81+51 8457 8463 8470 8476 8482 8488 8494 85oo 8506
71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567
72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627
73 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686
74 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745

75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802
76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859
77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915
78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971
79 8976 8982 8987 8993 8998 gook 9009 9015 9020 9025

80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079
81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133
82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186
83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238
84 92113 9248 9253 9258 9263 9269 9274 9279 9284 9289
85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340
86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390
87 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440
88 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489
89 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538

90 954-2 9547 9552 9557 9562 9566 9571 9576 9581 9586
91 9590 9595 9600 9605 9609 9614 9619 9624 9628 9633
92 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680
93 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727
94 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773
95 9777 9782 9786 9791 9795 9800 9805 9809 9814 9818
96 9823 9827 9832 9836 9841- 9845 9850 9854 9859 9863
97 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908
98 9912 9917 9921. 9926 9930 9934 9939 9943 9948 9952

-99 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996
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Exercises 9-5c..

Use Table 9-5d with the following exercises.

1. Find the logarithm of each of the following numbers:

(a) 342.0 (h) ..549

(b) 38.4 (i) .00684

.73') (i) 734000
(d) .0945 (k) 9450
(e) 58900

(-P) 73.2
(f) 21.4 (m) .000654
(g) 349.0 (n) 7.68

(0) 8.62

2. Find the logarithm of each of the following numbers. Inter-
polation is required.

(a) 684.2 (g) 38.74
(b) 9.484 (h) 495500.

(c) .06254 (i) .05879
(d) .7328 (j) .0006237
(e) 271.6 (k) 788600000.
(f) 1.647 (,).0 8.589

Find the numbers that have the following logarithms:

(a) 2 + .4425 (0 0 + .3522

(b) 2.4425 (g) 1 + .2330

(c).-2 + .8274 (h) -3 + .6839

(d) -2.7167 (i) -3.2924

(e) 4 + .6646 (i) 3.7135

4. Find the numbers that have the following logarithms. Inter-
polation is required.

(a) 2 + .4505 (f) -2.4748

(b) -1 + .9156 (g) -2 + .7592

(c) 4 + .1320. (h) 1 + .8487

(I) ',.5328 (1) -1 + .6329

(e) -2 474 (j) 3 + .4279
6 0

[sec. 9-5]
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5. Draw an accurate graph of y = loglox on a large sheet of

graph paper. Use Table 9-5d as a table of values for plott-

ing the graph.

9-6. Computation With Common Logarithms.

Computation with common logarithms rests on two simple facts:

(a) A number can be found (by using tables) if its logarithm

is known.

(b) By using the properties of logarithms established in

Section 9-3, it is frequently possible to find the

logarithm of a complicated expression quite simply from

the logarithms of the individual numbers in the express-

ion.

The procedure is best explained by means of examples. Since all

logarithms in this section are common logarithms,the subscript 10

has been omitted from the symbol logloa in order to simplify

writing.

Example 9-6a.. Find the value of 27.43 x 71.64.

Solution:

Let a denote the value of the expression. Then by the

properties of logarithms established in Section 9-3,

log a log (27.43 x 71.64)

log 27.43 log 71.64.

In order to make the addition easy, the work may be arranged in

tabular form as follows:

log 27.43 1.4383

log 71.64 1.8551

log (27.43 x 71.64)Z 3.2934

27.43 x 71.64 1965.

[sec. 9-6]
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71.64Example 9-6b. Find the value ell
25:ET

Solution: By the properties of logarithms established in
Section 9-3,

1 71.64
- log 71.64 - log 25.64.25.64

log 71.64 Z 1.8551

log 25.64 Z 1.4089

log N. 0.4462
71.64 N,

71.64 ,
25.64 ' 2.794.

.4
Example 9-6c, Find the value of

(25,64)3

Solution: Let a denote the valtie of the expression. Then
by the properties of logarithms establlshed J.n section 9-3,

log a log [27.43 x (71.64)2] - log (25.64)3

= 1.og 27.43 + 2 log 71.64 - 3 log 25.64

In order to make the additions and sxAbtractions easy, the work
should be arranged in tabular form as follows:

log 27.43 Z1.4383

2 log 71.64 Z3.7102 log 71.64 1.8551

2 log 71.64 Z'3.71.02

log 25.64 Z' 1.4089

log 25.64 4.2267

log[27.43 x (71.64)2] Z:5.1485

3 log 25.64 Z4.2267

log 27.43 (71.64)2

(25.64)3

27.43 (71.64Y

(25.64)3

0.9218

Z8.352

2

(sec. 9-6j
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Solution: It was :;hown in Section 9-3 that loglit ; log a.

x
1 ,Also, log log xl - log xo. Thus,

'44:4log (log 25.8 - log 64.8)

log 25.8 1.4116

log 64.8 1.8116

2 .8 ,
log -.4000

log
Ig4.8 1

72(-.4000) . -0.2000.

Again, we observe that the number -0.2000, being negative, cannot

be regarded as the mantissa of a logarithm, because all mantissas

are, by definition, non-negative numbers less than one. Moreover,

we have no negative entries in our table of mantissas (9-5d).

Therefore, we must write the number -0.2000 in standard form,

where the decimal fraction part is positive, as we did in some of

the exercises following Definition 9-5e.

We have -0.2000 = -0.2000 + 1 - 1 = 0.8000 - 1

.*. log -44 1 + .8000

and ^i/P-4 Z0.6310

Example 9-6e. Find the value of (0.08)32)5.

Solution: It was shown in Section 8-3 that log (0.08)432)5=

5 log (0.08432). From the Table 8-5d and the rules for

characteristics,

log (0.08432) - 2 + .9259.

log (0.08432)5Z - 10 + 4.6295

6 + 0.6295

(0.08432)5 0.000004261.'Then

[sec. 9-6]
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flote that it is often advantageous to keep the decimal frac-
tion part of the logarithm positive. For this reason we did not
express log 0.08432 in the equivalent form -1.0741 al'alough it

would not have been wrong to do so. In fact, if we use this value,
we have

log (0.08432)5, -5.3705

which is correct, but, because the decimal fraction part is nega-
tive, is not Lleable with our table. If we add and subtract 6,
we have

-5.3705 + 6 - 6 = 0.6295 - 6 as shown above.

Example 9-6f. Find the value of V(o.o;7846)4

Solution: The calculation is carried out as follows:

log V(007846)4 = 4[4 log 0.07846]

log 0.07846 - 2 + .8947 = -1.1053

log 0.07846 -4.4212

log o.o7846]Z -1.4737 - -1.4737 +

.5263 - 2

log ,51(0.07846)4 -2 + .5263

V(0.07846)4 0.03360

- 2

Exercises 9-6.

Use Table 9-5d 'to compute the value of the unknown in each of
the Collowing expressions:

x - x 0.7394

y = (141.6)(0.299)
.

c)8.43
).

1111
x

0.0007.-5b2 6

[sec. 9-6]
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2.J2225. x .

6.
,579 x lo-4

9.753 x 104

640 x (0.849)
7. 31.4

8. y = (0.0315)3

9. x (o.008976)4

10. t = (6.432)3 x (8.

11. z- 1

(1.23)-

12. x
(64.95)3

-
(8.954)-

4,
13. y = ." 0.03107

595)

.4
14. t = 71(0.09562)

'

/ 38x
15. If d = find H when d = 2.166 and R = 1200R

16. If t = lr ,\./27, find t whenj = 95.8, and g = 980.
g

Use "rr '= 3.14.

17. x =v/0.07324 x (252.8)2

(0.8954)2 x (735.7)2

18. x - log 97
log 134.4

6321//
19. r

81.25 .31"--0.16

20. Y
(6.385)3 x (8.438)2

3.1(o.6359)5

21.
(6.8,5)3 (8.438)2

y -

V4(0.6359)5

(sec. 9-6]

6 5



510

,43-/75 (0.004954)] f.22. x =
695.d

23. 2 log x + log (V)
6

24. If A' = (1 + r)n, find

(a) A when n = 30 and r = 0.03 ,

(b) r when A = 3 and n = 40 y

(c) A when r = -0.05 and n = -20

9-7 Logarithms with an Arbitrary Base.

In Section 9-1, there was defined for each k > 0 a loga-
rithm function as the area aSsociated with the hyperbola y =

For particular values of k like k = 1 and k = M = meTu

0.43429 . . . (see 9-1a), we obtain the natural logarithm func-

tion and the common logarithm function respectively. In general,
as stated in Equation 9-1, the logarithm function associated with
a particular positive value of k has the property that

log x = k ln x, x > 0.

If a is any positive number which is not equal to one, then
the ratio

log x k ln x ln x
log a k ln a = ln a

is independent of the particular k used to define the log func-
tion. In other words, the ratio of the values log x to log a
depends only on the numbers x and a and not on the, particular

logarithm function used. Thus, the function fa defined by

9 a-7 r IN;) = X >
"a kis. log a'

is independent of k. For example
loglox

flO (x) 10
g10 o loglox,

since log1010 = 1.

(sec. 9-71
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Definition 9-7a. For a > 0 and a / 1, the function f,

defined by (9-7a) is called the logarithm function with base a.

We write f
a

(x) as log
a
x. Thus

x9-7b logax log a'

Hence, for each positive a / 1, we have associated a loga-

rithm function with base a. In particular, the equation preced-

ing Definition (9-7a) tells us that this new logarithm function

with base 10 is our old friend the common logarithm function. If

we denote that value x for which ln x = 1 by the letter e,

then, by Definition (9-7a), the logarithm function with base e

is given by

But since

log x
loge x log e.

log X
log e ln e

for any logarithm function,

9-7c loge x = in x.

That is, the natural logarithm function is precisely the logarithm

function with base e. The number e therefore, takes on a

special significance. It is an irrational number whose value,

correct to 10 decimal places is given by

e 2.7182818285.

Notice that logarithms with base 1 are excluded from De-

finition (9-7a) because log 1 = 0.

The motivation for defining log
a
x as that ratio log x

-Llog a

that this ratio depends only on x and a, and not on the partic-

ular positive number k used to define log x. As a matter of

fact, the ratio
logbx

1c)gba

is independent of b. Note that

4-(244)
lo a

=
b

logiox = and loga

so that their ratio is precisely which, by definition is
log a

loge x.

[sec: 9-7]
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This simple relation,

logb x
9-7d loga x

logb a

for positive a and b different from one, is called the change
of base law for 2:9L-2±ILlams.

Two particular babes are,,J.nteresting. Let x = b In (9-7d);
log r

sir e lows u 1, we have-b log b

9-7e logab _
logba*

1Again, if we let b in (9-7d), thena

(i) log1 x

logax

-S-

log a log s
1 and (i) becomesBut logla -

1
log - log a

-g
T.

9-7f logax = - loglx.

We write down several simple properties of the logarithm

functions with arbitrary bases. The proofs of these properties
log xfollow.immediately from the fact that log
log

ax - The proofs

are left as exercises.

9-7g loga 1 . 0.

9-7h loge a = 1.

9-71 loge an = n, for any-integer n.

9-7j loga(x1.x2). loge xl + loge x2.

6 I'0
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Two other properties which will play an important part in the

next section are

9-7k loga xl = 1oga x2 if and only if xl = x2.

9-7-49 For each real number s, the equation loge x = s

has a unique solution.

To prove (9-7k), we observe that

log x, log xo
loga xl = loga x2 or IFEy± :1-,7g--e- if and only

if log xl = log x2. Moreover, according to (9-3h) and (9-310),

log xl = log x2 if and only if xl= x2 and our proof is complete.

To prove (9-7,i), we observe that loga x = s is equivalent

to the equation log x = s log a, which has a unique solution

according to (9-40 if we consider o to be the real number

s log a.

The following examples illustrate the applications of some of

the relations developed in this section.

First, we compute some logarithms with various bases

(Examples 9-7a to 9-7e).

Example 9-7a. Compute log2 8.

log 8 lo 23 3 log 2
Solution: log2 8 log 2 log 2 log 2

Example 9z02. Compute log4 32.

Solution: 1og4
52 31;c020 195. 2:: ;454

log c_2

(sec. 9-7]
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Example 9-7c. Compute log5 10.

Solution: This time we use (9-7d) instead of using (9-7b)
as we did in the first two examples.

log1010
1 , 1 ,log 10 = .6 , 1.4306 .

log105 log105
990

Note that Jt is possible to avoid this long division by using
1logarithms. Let t Then,

log t = -log .6990 -(-1 .8445)

1 - .8445 = .1555

.*. t 1.431.

Example 9-7d. Compute log110.

5

log 10 12&19_ log 10z -1.431.solution: log1 10 _
log 5 -1 5

5

Of course this answer could have been obtained by applying (9-70
to the results of Example 9-7c.

Example 9-7e. Find N if log3 N = 4.

=Solution: log
3

N -321E-H 4
log 3

log N = 4 log 3 . log 3 4
.= log 81

.*. N = 81.

Example 9-71. Show that logs xn = n logs x if n is an
integer.

Solution: We know that log xn = n log x by (9-3e). By

n &_xgDefiniti lo n n lo xon 9-7a, loga x -
log a leg a

log x- n
log d n log

a
x.

70
(sec. 9-7]
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Example 9-7. The logarithm function corresponding to

k = 2 coincides with the logarithm fUnction with what base?

Solution: We know that logb x is that logarithm function

whose value at b is 1. According to Equation 9-1,

log x = k ln x. Since log b = 1, we have

1 = 2 ln b for k = 2.

ln b = But, by (9-7c),

ln b = loge b log b
log e'

log b 1

log e

1
log b = 7. log e = log 1-8- (9-3f, p = 1 q = 2)

b = , because xl = x2 if log xl= log x2.

Exercises 9-7a

1. Find the value of the following logarithms without the use

of tables:

(a) log9 81

(b) log32

(c) 1og132

7

(d) log27 (i) log 4r-f 8

(e) log2 4 (j) log49 (

7

8(0 log1.5

(g) log 1

(h) log10 0.01

7 i
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2. Finq b, x, or N:

(a) logb 5 = (e) log, 64 x

(b) log27 9 . x (f) logs 9 15 = 5

(c) log9 N = (g) log1 N = -0.75

7E

(d) log N = -4 (h) logs . 1.5

3. Make use of Table 9-5d to compute the following logarithms
correct to the nearest thousandth:

(a) logy 17

(b) log7 200

(c) log0.4 10

4. Show that:

(d) logly 5

(e) log2 10

(f) log5 0.086

(a) log5 2 x log, 5 1 (b) 1og5 2 logl 2 = 0

5. Solve for x:

(a) log5 x = 1.17 (b) logl x = -0.301

6. Prove the following statements:

(a) 9-7g loga 1 . O. (c) 9-71 loge an = n for any

integer n.

(b) 9-7h logs a . 1. (d) 9-7j loge x1x2 =

logax1 logax2.

7. If logx N = s, and logx b t, find logs N.

7 2
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8. Complete the following table:

log2 N
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1 2 3 4 5 7 8 9 10

9. The logarithm function corresponding to k . 5 coincides

with the logarithm function with what base?

10. Compare the results of the preceding exercise with Example 7

and find the base of the logarithm function coinciding with

the logarithm function corresponding to any k > 0.

11. Show that the solution of,the equation loga x = s is the

same as the solution of the equation logs x = s logs a

provided a and b are positive numbers not equal to one,

and s is a real number.

Let us examine the graphs of several logarithm functions

defined by y = loge x.

If a = 10, we have the familiar graph of the common loga-

rithm function shown in Figure 9-11. If a = 100, we can sketch

the graph of log x by comparing it with the graph of log10 x.

To do this, we let a 10 and b = 100 in Equation 9-7d and

write

log100 x
log100 10 x 1ogi0 x.

Now, log
100 10

so we obtain log100 x =
log10 x From

this we see that every ordinate of the graph of y = lo g100 x
is

one-half the corresponding ordinate of the graph of y = log10 x.

Similarly, each ordinate of the graph of y = logl x is the neg-

ative of the corresponding ordinate of the graph of y = log10 x;

and each ordinate of y . log x is the negative of the corres-

100

ponding ordinate of the graph of Y = log100 x. All four of these

graphs are sketched in Fig. 9-7a.

(sec. 9-71

7 3



518

9-7m

Fig. 9-7a

These graphs indicate that:

(i) If a > 1, loga x < 0 if x < 1 and loga x > 0 if
x > 1.

(ii) If a < 1, logax > 0 if x < 1 and loga x < 0 if
x > 1.

(iii) For a > 1, log
a

x
1
< log

a
x
2

if and only if

(iv) For a < 1, loga xl < loga x2 if and only if

xl > x2.

These statements are indeed true and they follow directly
from (9-7b) and the corresponding properties of the log function
given in Section 9-3.

7 I
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Exercises 9-7b.

1. Sketch the graphs of y = log,__ x
.110

same set of axes.

519

and y = log
1
x on the

1-15

2. If n is a natural number, show that each ordinate of the
1

graph of y = log x is times the corresponding ordinate
a

of the graph of y loga x.

3. Prove:

(a) If 1 < a and, a < b then logab > 1.

(b) If 0 < a < 1, and a < b then logab < 1.

Prove properties (i), (ii), (iii), (iv) for loga x by

making use of the corresponding properties of log x and

without reliance on the graphs shown in Figure 9-7a.

5. Show that if 1 < a < b .and x > 1 then logax > logbx.

If, however, 0 < x < 1 then logax < logbx.

The following is a summary of properties of logarithm func-

tions with an arbitrary base:

Definition 9-7a. For a > 0 and a / 1, the logarithm

function with base a is defined by the function

log x
f
a
(x) = logax log a'

9-7c. loge x = )9n x , x >.0 .

logbx
9-7th loga*x

logba
a / 1, b 1, x > 0, a > 0, b >

'

1
g-7e. lob logba

, a / 1, b 1, a > 0, b > 0.gu =

q-yr. .0gax = - log' x, a / 1, a > 0, x > 0.

-a-

9-7g. logal . 0, a / 1, a > 0,

[sec. 9-7]
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9-7h.

9-71.

9-7j.

9-7k.

logaa = 1, a / 1, a > 0.

logaan = n, for any integer a / 1, a > 0.

loga loge xl + loga x2, a/l, e>o, xl>o, x2>0.

logax1 = logax2 if and only if xi = 8.>0,x1>0,x2>0.

9-7). For each real number s, the &Illation logax s

has a unique solution, a > 0, a X 1.

9-71' log
a
xn = n log

a
x, for any integer n, a>0, x>0.

9-7m logaxi < logax2 If and only if Xi < x2, aj., a>o,.x >0.

9-8. Exponential Functions --Laws of V.tOnenta

Let us look once again at the gra9h of the furIction defined
by y loge x, (a > 0, a / 1, x > 0).

Fig. 9-8a

The domain of this function conslste of all Positive numbers
and its range consists of all real numberZ We have seen that any
horizontal iini. y = s w117. intersect trila graPh ifl one and only
one .point (Figure 9-8a). In other worcls the eqUation logax .-..

[see. 9-6)
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has a unique solution. According to our discussion of inverse

functions in Chapter 3, Section 8, the logarithm function has an

inverse function which we will call, for the moment, Ea. This

inverse function is then defined by the equation,

y =

We should note that E(x) is not defined for a = 0 or 1 be-

cause loga x is not defined for these values of a.

Again drawing on Chapter 3, we recall that inverse functi,'-as

have the property that their graphs are symmetric in the line

y = x. This fact enables us to sketch the graph of y

This could be accomplished by drawing the graph of y logax in

ink and then folding the paper along the line y = x so that an

impression is made while the ink is still wet. The resulting graph

of y = E(x) is shown in Figure 9-8b.

(o,$)

ploga x

Figure 9-8b

From the graph it is clear that the domain of Ea is all real

numbers and the range of Ea is all positive numbers.

r7
I
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Since -
a

and log
a are inverse functions, we know from our

discussion in Chapter 3, Section 8, that each of them "undoes" what
the other one does. This means that

9-8a E
a
[log

a
31 = s or (i) loga s is the unique solution of

E
a
(x) = s, and

9-8b loga[Ea(u)] = u or (ii) Ea(u) is the unique solution of

logax = U.

This latter fact, (ii), enables us to compute Ea(n) when n is

an integer. We ask for the solution of

loga(x) n, where n is an integer.

Since E
a

and log
a are inverse functions, we know that

log
a
[E

a
(n)] = n. However, according to (9-71),

log a
n

= n, where n is an integer. Therefbre,
, a

h n(TO = a ,9-8c because xi = x2 if loge xi . logs x2

according to (9-7k).
In particular, if n 0, we have

9-8d. E(0) - 1, and if n = 1

9-8e, E
a
(1) - a.

Equation 9.-8c furnishes us with a compelling and permanent
notation for the function E. The function is called the exponen--tial Cunction with base a, and E

a
(s) is written a

s
, where a_

is called the base and s is called the exponent. The symbol a
is read a2 "a to thu s

th
power", or simply "a to the s".

[sec. 9-8.1
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Let U5 now review what we know about the function E
a

:

(i) E
a
(s) is defined for all real numbers s.

(ii) Ea(s) is'the unique solution of logax = s

(iii) E(s) has the same value as as when s is an

integer n.

The first two statements follow directly from the fact that Ea

'was defined as the inverse of loga; the third statement is another

way of saying Equation 9-8c.

These statements, (i), (ii), (iii) suggest that as

might be defined in terms of Ea(s), i.e. as a unique solution

of the equation logax = s. If this is done, we will have a serv-

iceable definition for as when s is anz real number, whereas

until now a
s has been defined only for the case when s is an

integer. Moreover, the new definition, while much broader, agrees

with our previous interpretation of an.

Accordingly, we adopt the following definition:

Definition 9-8a. If a > 0, a / 1, and s is a real

number, as is that real number x which is the unique positive

solution of the equation logax = s.

Since we now write as for E
a
(s), Equations 9-8a and 9-8b

become respectively

107,;lu

9-of a , u for all u > 0. (loge u is the unique

solution of ax = u)

9-8g logaas = s for all real s. (as is the unique solution

of logax s)

Equations 0-811 and (9-8g) together are equivalent to '6his

statement: If a > 0 and a / 1 Lhen a
x

and log
a
x are

inverse functions.

[sec. 9-8]
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The meaning of our new definition (9-8a) and the equivalence
of E

a
(s) and as are illustrated by the following examples and

exercises:

Example 9-8a. Evaluate y.
1

,NSolution: According to our definition, 33, or E-k1m iS

1the unique positive solution,of the equation log3x = 5. But,

log3x =
(9-7d)log103

log,x
iog1

1 1. . 5 or loglec
3dog103 5(0.4771) ^- 0.1590,

and x 1.442.

Example. 9-8b. Use common logarithms to approximate the
value of

3 .

Solution: E
3

( yr5) or 3'15- is defined as the positive
solution of

log3x . Applying (9-7d) we have

loglOx
= .log103

loglox = log103

0.8267,

, -x , 6.710
.and 1

Examp:e 9-8c. Find the value of 2.-. by sketching the graph
of E

2
(x).

8 0
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1
olution: We seek E

2

/ N We can obtain an approximate
e

value from the graph of 2(x). We know that E2(x) is the in-

verse of the function log2x. Therefore, we can obtain the graph

of E2(x) by first graphing y = log2x ana uneli reflecting this

graph in the line y = x, as we did in Figure (9-bb). First, we

make a table for y log2x.

x
1 1

2 4 8

y _4 -2 -1 0 1 2 3

Tne corresponding table for y = E2(x) is obtainedby interchang-

ing x and y. Therefore, points A(-4,46), C(-2d-),

etc., lie on the graph of y E2(x). Since, log2x has a con-

tinuous graph, its inverse function E2(x) also has a continuous

graph. We obtain this graph by drawing a smooth curve through

A, B, C, ... as shown in Figure (9-8c). The ordinate correspond-
1

ing to x = 7-2 is approximately 1.4.

k4

Figure 9-8c

[sec. 9-8]
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Exercises 9-8a.

1. Evaluate the following by means of Definition 9-8a and Equa-
tions 9-81 and 9-8g:.

(a)

(b)

(c)

(d)

(f)

533

4

4

(1.5)-3

102.4163

loo.27 18 -3

(g)

(h)'

(i)

(j)

(k)

(J)

.1C2.1871

10-1'4444

log10104.1623

los772.43

log, 0.0813
7 '

2 log
5

3
5

2. Use common logarithms to find the approximate value of each
of the expressions listed below. It will be necessary to
make certain approximations and the answer you obtain will be
only an approximate answer. This approximate answer should
be as accurate as the use of a four place logarithm table
will permit.

(a)

(c)

(d)

( e )

(r)

(g)

(h)

31'72

40.48
(i)

(j)

(k)

())

(m)

(n)

(o)

(P)

(2.54) r5

10'17

(1.2510.48

107

10154

lo-0.42

(2.7513.2

2

3-2.5

2'13-

3- 1-2

(sec. 9-8)
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3. Draw the graphs of the functions defined by

(a) y = 3x (b) y = log3x

on the same set of axes. How are these graphs related? From

the graphs read the apprcloximate values of 3
1.7

and

log3 1.7.

Draw tne tsraph of the function defined by y x
-"10

Write the equation which defines the inverse of this function.

Draw the graph of the inverse function.

5. Follow the instructions given in Exercise 4 above for the

functions defined by:

(a) y = logl x (b) y = 4)x

b. suPpose Cl, C2 and c3 are the graphs of three functions,

f, £2, and f3 and suppose further that (a) C1 and C2 are

symmetric with r(Ispect to the y-axis, (b) C2 and C3 are

symmer,ric with respect to y = x. If fl is defined by

y = (1-)x (a > 0, a / I). Write the'equation which defines

f3.

We are now in a position to prove a very important relation

which is based on (9-8g) and two formulas from the preceding

section, (9-7d) and (9-7e).

According to (9-7d)
4-
,

t 1
log

a
x = -r-,----- - logxx 177y-y- .

-x

But log xxt t for t any real number

1
and 1ogxa

- log
a
x

9-8h log axt = t log
a
x.

[sec. 9-8]
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In dealing with positive integral exponents in our previous
utudies in algebra, the nuMber as was interpreted to mean the
product obtained when a is used as a factor s times. It was
then a simple matter to verify that, if s and t are positive
Integers, and a and b are real numbers,

(7 as x at = as
+ t

(as)t as t9-6J

9-8k (ab)
s

asbs

Later we defined a
0

and a
-s

, where s is a positive
integer, so that (9-8i) remained valid, and we were led to con-
clude that

9-8) a° = 1, and

-s 1
9-8M a =

s are appropriate definitions provided
a

a / 0. In fact, it is readily shown that (9-8i), (9-8j), and
(9-8k) are yalid when s and t are any integers if definitions
(9-8)) and (9-8m) are accepted.

Now we have assigned a meaning to as for any real exponent
s, provided a > 0 and a / 1. Do the relations (9-8i) through
(9-8m) remain valid when s and t a-e any real numbers and a

and b any positive numbers not equal to one? The answer is yes,
and we shall prove it directly. But let us first give a name to

the relations (9-81) through (9-8m) -- call them the laws of
exponents. Moreover, to dispose of the case a = 1 which is not
covered in our definit!..on, let us agree that ls shall equal 1

for all real s. It s then easily seen that for a . 1 and
b > 0 the laws of exponents are valid.

(sec. 9-8]
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Theorem 9-8a. Let a and b be any positive numbers, then

for all real numbers s and t the laws of exponents (9-81)

through (9-8m) are satisfied.

t
Proof of 9-81: asat

as +

(9-7i)(1) log as at log
a
as + log a

a a

(2) loga as = s, loga at = t (9-80

(3) loga asat = s + t From (1) and (2)

loga as +t=s+ t (9-8f)

(4) loge
as + t

= loga asat (3)

as + asat (9-7k)

Proof of 9-8j: (as)t = ast.

(1) loga(as)t = t logs as (9-8h)

(2) loge as = s (9-8f)

(3) .*. loga(as)t = st

(4) But, loga ast st (9-80

log,a(as)t
logs ast (3) and (4)

(6) (as)t
ast

= (9-7k)

Proof of 9-8k: (ab)s
asbs

(1) logab(ab)s s (9-8f)

'(2) logabasb13 = (logab as) + -7j)(logab bs) (9

(3) 1°gab as
s logab.a and

logab bs = s logab b

(4) 1°gab
asbs = s(10gab a) + s (logab b)

s(logab a + logab b)

(sec. 9-8)
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(5) log
ab

a log
ab

b log
ab ab = 1

(6) logab asbs .sx1 = s

(7) log
ab

(ab)s log
ab

asbs

(8) (ab)s asbs

Proof of 9-8.f: a° = 1

(1) loga 1 = 0

(2) loge 0

(3) a° . 1

-s 1Proof of 9-8m: a =
a
s

(1) al3a-S = a . 1

1(2) But, as x = 1
a
s

(3) a-s 1

a
s

(9-7k) and (9-7h)

(4) and (5)

(1) and (6)

(9-7k)

(9-7g)

(9-8f)(set s 0)

(9-7k)

(9-8i) and (9-8')

In Section 7 we developed a "change of base" formula for the
logarithm function. Equation (9-7d) can )e written in the form

logb x = logs x - logb a

which enables us to express the logarithm of, x to the base b

as a multiple of the logarithm of x to th t. base a. We now de-
velop a similar change of base equation for the exponential func-
tion.

For example, we might ask: "What power of three is equal tc
the third power of nine?" To answer this vic must solve the equa-
tion 3

x
93 . In this case it is readily seen that the value of

x ls. 6, (2rdinarily the solution of the equation ax = bs is

more difficUlt.

[sec. 9-8)
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We have learned that if two numbers are equal, then thelr

logarithms to any base are equal (9-7k/). Therefore, loge =

loge b3 and this equation is equivalent to x s loge b accord-

ing to (9-7h) and (9-8h). Accordingly,

9-8n bs as logab
(. b > 0, s any real number).

A special case of this-formula which is frequently used in

mathematics is obtained by letting a = e, the base of natural

logarithms:

9-8o bs es log
e
b

or bs es
in b

At this point it is appropriate for us to consider the rela-

tion between radical expressions such as

and expressions involving positive rational exponents such as

1 1 1

5 7, 2

1

Consider first q.77T and a q where q is a natural number.
1

According to Definition 9-8a, a q is defined as the unique

positive solution of logax = That is,

1

(1)
CI- 1loga a =

In Section 3, W is defined as the positive number whose
th

power is a. That is

(ii) ( ciNra )q a

(se, 9-S1
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If two positive numbers are equal then their logarithms to base a

are equal (9-7k). Hence,

(iH) loge (q,/-H)q logaa , or

(iv) q loga - 1

(v) loga cif-ET= *

(vi) loge gra- = logaa

1

(vii) q---
a = a

(9-8h) and (9-7h;

(1) and (v)

(9-7k)
We have thus established

1

= a q where a > 0 and q is a natural

number.
1

Now that we have established the equality of and a q,

it is readily secfn that

2.
2-8q c.,113' = (17-i)P = x q where p and q are posi-

tive integers.

The proof requires our new equality and the "power of a power" law,
We have

1 2
(I) VxP (xP)q x q and

1 o

(ii) (V-7)p (x cl)P

Equations (1) and (ii) together are equivelent to .(9-8q).

We close this section with the statement of a theorem which

summarizes the -.'elatlon between log,arithms and oxponunt:;:

[sec. 9-8]
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Theorem 9-8b. a . N if and only if s = loga N, provided

a is positive / 1 and s is real.

Proof,:

(1) as - N Hypothesis

(2) log = loga N

(3) But, loga a

(9-7k)

(9-8g)

()) loga N

The proof of the second part uf this theorem, if s = loga

then a' N, is left to the student.

The following is a summary of the properties of the exponen-

tial function:

Defihition 9-8a. If a > 0, a / 1, and s is a real num_

ber, a3 is that real number x which is the unique positive

solution of the equation logax = S.

log
a
u

9-8f a u for all u > 0, a > 0, a 1.

9-8g locaa- s cor all real s, a > 0, a 1.

quations (9-80 and (9-8g) together are equivalent to

this statement: It' a > 0 and a / 1, then ax and

logax are inverse functions.

9-7h iog x
t

t log x for a > 0 and a / 1 and

x > 0, t real.

t
a x

+
at , a > 0, s and t real.

(a
s

)

t
a
St

, a > of s and u real.

(40 a1:1"3, a > 0, b > 0, s real.

a() , 1 a > 0.

[sec. 9-8J
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9-8m. a
1-s

= , a > 0, s real
a
s

s
s log

a
b

b a9-8n a > 0, b > 0, a , 1, 3 real

bs = e
s log

e
b

9-8o = e s ln b
, b > 0, s real.

9-8q = x , x > 0, p and q are

positive integers.

Theorem 9-8b as = N if and only if s = loga N.

The following examples show some applications of the
laws of exponents:

/ s a
s

Example 9-8d. Show that kb = where a and b are

positiVe real numbers, and s is real.

Virst Solution:

log
c

(.)s
= s log

c
(.N = s(log

c
a - log b)b b

asAlso, log, -7- = logc a
s

- logcb
s

= s logca - s logcb

= s(logca - logcb)

s . a
s

(§) = because xl = x2 if logcx1 = logcx2.

Second Solution: We learned in Chapter 1, Section 6, that

a 1 1- . a x u. Moreover, - is written as b -1 .

-s a
s/aq s

x 1s\\\k- = (a = (a x b-1s = as x b = --b
bs

9 0
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'Example 9-0e. Expressions involving radicals may be express-

ed In equivalent forms involving positive rational exponents.

Verify the following:

1 1 1

. a - a --'! 757T
1

(9-8q and 9-8k
) j)

1

1

1 1 --1

) 5

7 1 ) 3
47

b

Example 9-L.,:. An expression involving rational exponents

may be converted into an equivalent radical form. Verify the

A 20/
, .-_- V 3

9

following:

(a)

(b)

(c)

1 1 4 ::. 4

3
7

x 37 . 3
n

x 3
75'

. 3
tj

2 1(7-*1- 4 7 4 = 7- . L.

1 ,_ J. 1 2
1

.7a- 4- a-) = a- x ---7- - a. x a-5
(-2

a 5
-

-2- _ _2-

c,
_ __,e.

_L2 2 12

.....

.

1
- a = a .

5

3
a
7

Example 9-6g,. Expressions involving negative integral ex-

ponents may be changed to equivalent expressions in which all ex-

'ponents are positiv=..- Verify the following:

, a
3

(a) -..-(L)-3a
1

,

,.

--.

,..3 -5
t ) t

a-

(b) a

-1
b
-1

(a
-1

b
-1

1 ab 1

-1 -1
(a

-1
ib

-1 ) ab
b + a

a -rb

[sec. 9-8]
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Example 9-8h. Some expressions involving radicals and

rational exponents are easily evaluated. Verify the following:

1

(a) 49 . 17(.5 , 7

2

(b) 275 (31-7)2 = 32 = 9

1
(c) (3/-7)6 (73)6 2
(d) (2-4)-3 212

4096

74.13Example 9-81. Express as a power of 13.

s log b
Solution: We apply (9-8n), bs = a a . Let b = 7,

s = 4.13 and a = 13. We have 7
4.13 134.13 log137

13x

log107
where x = 4.13 1og137. log1,7

1og1013 (9-7d)

arid

arid

and

,.. 0.8451
log137 ,..

1.1139

,.. 4.13 x 0.84_51.'. 4.13 log137 -.
1.114 = x

log x = log 4.13 + log 0.8451 - log 1.114 .

x = 3.134

74.13 133.134

Example 9-8j. Equations in which at least one exponent is a
function of the unknown are called exponential equations.

1

(a) 3x

x +

2
6

1

(t, ) 3 .5x

(sec. 9-83
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Solution:
1
75- x

(a) 9`

1
(32)2

x
3x

. .
3x

2
- 6 3x

logarithm or each member, we obtain

x
2 - 6 = x or

x2 - x - 6 = 0 .

x = 3 or x = - 2. Each result checks.

(b) Find the common logarithm of each member:

1x +
log10 3 = log105x

,x + ) l
it

( og103 = x log
l0-

(x + )f-)(0.11771) ::: x(0.6990)

Evaluate the following.

(a) 273

(b) 110

, -1
(c) 5

Exercises 9-8b.

(;)-2

(0.027)
1

(0.0001)7

(r)

(g)

(h)
3
7 1

(d) 81 (i) (7)

(e) 81 1 (.1) (4)--

[sec. 9-8]
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If we find the
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tk)

())

(m)

(n)

(3-2)-3 (P)

(r)

(s)

(5.4r5r15-

71.26 71.74

7f-2-)N17

-7317-Y

(3,1-7-)O

) )

2_loge

1

(0) [(0.2)7]-4

2. Write each of the following as an equivalent expression in
which all expor-mts are positive.

(a) (ab)-1

(b) (a-2b)-3

(e) (x-1 + y-1)2

(f) -13xY -1x + y
-1 -1

(c) (x-1 + y-1)(x-1 - y-1) (g) S
x- - y-

- -3
(d) a2b-1 (h)

3
Y_1

x + y

(0 (x-2 y)-2

3. Write each of the following as an equivalent expression
for (a) - (i) in radical form.

(a)

(b)

(c)

(d)

(e)

1

ax.-5

2 1

(a3)7

(11-2)-
1

a 3 4. a

2

5
1

5

(0

(S)

(h)

(i)

[sec. 9-8]
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't(j) Express with a single radical sign.

[1 12 11 2 1

(x) + y3)(x3 - x3y3 + y5) 2

4. Use common logarithms to compute the value of each of the

following expressions.

(a) ('.< .80)-3

(0) (276.3)-5

(c) (0.8412)-5

(356.8)-1.1

1

(e) 12,!..2631211_

(0.9816)
1.1

1 _1
(0 16 (0.007123)+)3 (82671) 5

5 Show that xs = ys if and only if x = y provided x and y

are positive 1 and s is real.

6. Solve the following equations for x.

(a, 2x 6 . 32

92x 273x - 4

2

(c) 2x
+ 4x 1

(d) 252x = 5x
2 -12

(e) 8 = 4x
2

25x

(0 2x 5 10x

t. Solve tne following equations for x.

(a) 102x 43

(b) e3x = 16

(c) 23x =
32x + 1

(d) 5x + 2 7x - 2

(e) (1.03)x = 2.500

e2x x2e- + 1 = 0

(g) 1og3 (x + 1) + log3(x+3) = 1

log10 (7x - 12)
(h) 2

loglox

(i) log V/ n
x

:)5

[sec. 9-8]
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1

?rove that xs and xs are inverse functions. (x > 0,s 0,
1
7

s real). Graph y = x3 and y = x on the same set of axes.

7?. P,-ove a
s

N s = (a > 0, a / 1, N real, N > 0.)

13 Draw the graphs of (1) y . 2x and (2) y = 4x on the

set of axes. It will be found that each abscissa on the

6raph of (1) is twice the corresponding abscissa on the

iraph of (2). Can you generalize this statement for the

rrhphs of (1) y = ax and (2) y = bx (a>0, b>0, x real).

11. if 0 < a < b compare aX and bx 'when

(a) x ) 0

x 0

(c) x < 0.

Solve each of the following equations as indicated.

(a) Solve v = c xn for n.

(b) S -byolve u a e for v. Use natural logarithms.)

(c) Solve (1 - r
ior n.

,u, 'Solve loE.y for y.
7

(e) Solvel = arn 1 for n.

'lye for x: 1og10(x - h) logio (x ±3) - log1030.

() Solve the following equations for x and y.

f , 2
'10 6.10Y

[sec. 9-8]
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13. Solve for x.

(a) e
x

+ e-- = 2

(b) ex e-x = 2

14. According to the law of radioactive decay, the mass m re-

maining t years from now is given by the formula:

m = m
o
e
-ct

where e is the base of the natural log-

arithm, mo is the present mass and c is a constant de-

pending on the particular radioactive substance involved.

The-half-life of a radioactive substance is the time elapsed

when m = -Ail Find the half-life of a radioactive substance
e o'

for which c = 2.

15. If an amount of money P is invested at an interest rate of

r (expressed as a decimal) per year, the amount A accumu,.

lated at the end of n years, when interest is compounded

annually, is given by the formula: A = P(1 + r)n. This

statement is known,as the compound interest law.

(a) Find the amount A to which an investment of $10000

will accumulate in 20 years if interst is compounded

annually at 6%.

(b) How long will it take for an investment to double itself

if interest is compounded annually at 4 26?

(c) If one dollar grows to 3 dollars in 30 years when

interest is compounded annually, find the approximate,

rate of interest.

9 7

[sec. 9-8]
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9-9 Miscellaneous EXercises

1. Find the value of:

1og055 - logl 8

(a) 1
It

log9 27 + log41

log
3
81 - log

y
1

(d)
log2,0(ff d log1041.0(51

ll 1 ni
log216s'

A

(b) log51 + log8 4,5V7R7 (e)

(c)
log497 + 1og279

4
logl 64 -

log 1 + log48
.133

log
9

81-3;

(f) 2

-Z/r-57log4973 log64 16

2. Find the value of x:

(a) x = 1og381 (f) log18 = x

(b) 10g2x = -5 (g) log9x

(c) logx8 (h) logx0.04 = -2

(d) log
5
0.2 = x (i) logx Nrg-.

(e) logx49 = 4 (j) log0.110 = x

3. Complete the following statements:

'(a) log
a
a
f

logx
(b) a -

(c) logbx logab =

(d) logba logab

(e) The inverse of the function defined by the equation

y = ax is defined by the equation T. ?

9 8

[sec. 9-9]
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(a) log5x . 3

(b) log7
)/2x 3

(c) 1og
x
27 =

2

(d) 1og10x2 loglox = 2

x log
e
b

2
x log c

(e) e e (bc)

5. Write with positive exponents and simplify:

-1
(a)

a

-k

(b) (11)

2

(b) -1

(£) (d7e3) -3

-2 -2
2 + 3

2 3

(h) x-1 + y-1

(i) a-1 + b-1

(cd)-1

a
-2

+ b
-2

/
a
-1

+ b
-1

6. Solve for x. N and a are positive real numbers).

(a) ax = N

(b) xa = N , x > 0,

(c) N = logax a / 1, x > 0

9 9

[sec. 9-9]
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7. Find the value of x by means of the laws of exponents:

1

(a) 27 24 = 2x (d) 4 - 2x

Z/T7

(b) 3x = 3-°.3 4.17 (e) x = 16 - 4° +

2

(c) 6;5 . 312.7. = t x

8. Find the numerical value of x for each of the following.

Base necessary computations on Table 9-5d.

9

(a) 10x = 41.63

(b) 3x = 733

(c) x5 = 972

(d) x; = 400

(e) ex 35

(f) x (4.17)0'52

(g) log7x = 2.4

(h) 1og7700 = x

(i) x = 3-3'7

(j) 5x = 0.083

(k) log0.5 0.03 = x

u) 2513x = 0.0417

(m) (0.5)x = 70

Solve for x. Assume that all other letters represent

positive re'al numbers. Express all logarithms to base 10.

(a) ax b

(b) xa b

(c) b = logax

(d) m = axn

(e) m = arx

(f) A = P(1 + x)s

(g) A = P(1 + r)x

(h) ex ln b

*10. Compare the graphs of y = 1og102x and y = 10
2x

. Are these

inverse functions?

[sec. 9-9]
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W11. How to construct a logarithmic scale: On a sheet of paper

draw a line 10 inclas long. Mark off in tenths and hund-

redths. Fold the sheet of paper on the line so you can use

it as a ruler. On another sheet of paper draw a line equal

to 10 inches. Align the ruler with this line. Because the

log of 1 is 0, place 1 on your new scale opposite 0

on you ruler. Because 0.3010 is the log of 2, place 2

opposite 0.30 on your ruler. Proceed similarly until you

have placed 10 opposite 1 on your ruler.

LOG SCALE

1
2 3 4 5 6 7 8 9 10

1

1
1

0 . 1 . 2 .3 .4 .5 .6 .7 .8 .9 1.0

RULER

Questions:

(a) Using two of these log scales, can you make a slide

rule? Can you explain how a slide rule multiplies and

divides?

(b) Construct a coordinate system using logarithmic scales

on the coordinate axes instead of the normal linear

scales. On this coordinate system plot y = x
2

. Can

you explain the result?

(c) Construct a coordinate system using a logarithmic scale'

on the axes of ordinates and the normal linear scale on

the axis of abscissas. On this system plot y = 2x.

Can you explain the result?

[sec. 9_9]
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Chapter 10

INTRODUCTION TO TRIGONOMETRY

10-1. Arcs and Paths.

Let P and Q be any two

distinct points on a circle with

radius r. These two points

separate the circumference of a

circle into two arcs, the sum of

whose lengths is 2rr. The

length of any arc of a circle is

equal to or less than airr.

Let P be a point on a

given circle as in Figure 10-lb.

Let a point R start at P and

move, without reversing its

direction, a distance d along

the circle to a final position

Q (observe that d may be great-

er than the circumference of the

circle). This motion will be

called a path, and it win be Figure 10-1b.

denoted by the symbol (P,+d) A path on a circle.

if the motion is in the counter-clockwise direction, and by the

symbol (P,-d) if the motion is in the clockwise direction around

the circle. The symbol (P,O) corresponds to the path in which

Q does not move from P. The.point P is the initial point of

of the path, and the final position of Q is the terminal point

of the path.

Observe that every path is described by a symbol (P,c),

where c is some positive or negative real number. Conversely,

1f c is any rea).number, there is a unique path on the given

circle corresponding to the symbol (P,c)..

Figure 10-1a.
Arcs on a circle.

1 0 3
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Two paths (P1,c1) and (P2,c2) are esual if and only if

P
1
= P

2
and c

1
c
2 .

Two paths are equivalent if and only if

cl = c2. Observe that two paths are equivalent if they are equal,

but that two equivalent paths need not be equal.

If (P,c) is any

path on a given circle,

there is a unique path

(P0,,c) on this circle

which has its initial

point at a given point

P
o

and which is equiva-

lent to (P,c).

We shall now define

the addition of paths.

If (P1,c1) and (P2,c2)

are,any two paths on the

same circle, then

(P1,c1) + (P2,c2) = (P1,c1 + c2).

Since (P2,c2) + (P1,c1) = (P2,c2 + c1), we see that (P1,c1)

+ (P2,c2) and (P2,c2) + (P1,c1) are not equal unless P1 = P2.

Nevertheless, (P2,c2) + (P1,c1) is equivalent to (P1,c1)

+ (P2,c2), since c2 + cl = cl + c2 by the commutative property

of the addition of real numbers.

Figure 10-1c.
The unique equivalent path
with initial point at 10.

Figure 10-1d. Graph of (P1,c1) + (P2,c2).

[sec. 10-1]
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Exercises 10-1

1. Let P
1

and P
2

be

points on a circle of

radius 5 as .hown in

Figure 10-1e. Draw

diagrams to show the

following paths:

(a) (P1,r)

(b) (P2,10r)

(c) (P1,-r)

(d) (P2,-10r)

(e) (p1,25r)

(f) (P1,-2510

(g) (P2,30r)

(h) (P2,-30r)

Figure 10-1e.
Figure for Exercises 10-1.

549

2. Draw diagrams to illustrate the following additions of paths:

(a) (r1,4) (P2,4)
(d) (P2,-5r) + (P1,1010

(b). (P24) 4 (P1,4) (e) (131,412)

(c) (P1,1010 + (P2,-510 (f) (P2,-4) + (P1,471)

3. Which ones of the sums in Exercise 2 above are equivalent?

104

[sec: 10 -1.1
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10-2. Signed Angles.

The rays T? and. -Air form

an angle in the elementary sense

(see Figure 10-2a). It will now

be shown that paths on a circle

can be used to extend the

.elementary notion of angle.

Consider a circle with

radius 1 whose center is the

vertex of the angle formed by rays
-->

AP and AQ. Figure 10-2b shows

a path (P,O) on this circle

that can be associated with this

angle. It is immediately clear,

however, that other paths could

be associated with the elementary

angle. To overcome this difficulty

we introduced the notion of signed

angle. There is a one-to-one

correspondence between the set of

signed angles and the set of paths

on the unit circle.

Let a path (PM on the

unit circle be given (see Figure

10-2c). The ray AP is the

initial side of the corresponding

signed angle. If Q is the

terminal point of the path (P,A),

the ray Tr is the terminal side

of the signed angle. The path

(P,A) specifies how the signed

angle is generated, in the follow-

ing sense. The ray Tri! is placed in

and then rotated about A so that R

The terminal position of AR is then

the triple (-)51, AQ, (PM); it is

[sec. 10-2]

1 5

Figure 10-2a.
An angle in the elementary sense.

Figure 10-2b.
Angles and paths.

Figure 10-2c.
Generation of angles.

the initial position AP

traces the path (P,A).

;1TZ The signed angle is

completely determined by the
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path (Pig) and the vertex A in the sense that the signed angle

can be constructed when A and (P,A) are given. It is thus

appropriate to denote the signed angle (AP, AQ, (1),g)) by

(A,P,A).

A signed angle has a direction

associated with it. If Q > 0,

the angle (A,P,A) is generated by

rotating AR in the counter-clock-

wise direction, and we say that the

angle is positive; if Q < 0, the

angle (A,P,A) is generated by

rotating AR in the clockwise

direction, and we say that the

angle is nesative.

Example 10-2a. Construct the angles (A,P4),

(A,P,5), and (A,P,-10), where P is a given fixed point on a

unit circle with center A.

Figure 10-2d.
Signed angle.

Solution: The angles are shown in Figure 10-2e.

A=

(A,P
'2

(A,P,-70

8=5

O=10
(A,P,-10)

Figure 10-2e. Construction of the four angles indicated.

106
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We say that two angles (A1,P1,01) and (A2,P2,02) are

equal if and only if Ai = A2, P1 = P2, and Al = 02. If two

angles are equal, they clearly have the same vertices, the same

initial sides, and the same terminal sides. It is not true, how-4

ever, that two angles with the same vertices and initial and
terminal sides are equal. If (A1,P1,01) and (A2,P2,02) have
the same initial and terminal sides, then Ai = A2 and

10-2a.
1
= g2 + 2nr,

where n is 0 or a positive or negative inter;er. Furthermore,
angles with the same initial and terminal sides are called
co-terminal angles. Two co-terminal

angles are shown in Figure 10-2f.

Two angles (A1,P1,01) and

(A2,P2,G2) are equivalent' if and

only if
1

=
2*

If the signed

angles (A1,P1,01) and (A2,P2,02)

are equiValent, then the geometric

angles p1A1Q1 and P2A2Q2 are

congruent in the sense of geometry.

Example 10-2b. The two angles (A1,P1,i) and (A2,P2,:)

shown in Figure 10-2g are equivalent, but the two angles

(A1,131,5) and (A2,P2,-) shown in Figure 10-2h are not

equivalent.

Figure 10-2f.
Two co-terminal angles.

107
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An angle is said to be in standard position in a coordinate

system if and only if its ver.6ex is at the origin and its initial

side extends along the positive x-axis. Every angle is equivalent

to one and only one angle in standard position. It will be

convenient to denote an angle in standard position by (0,X,G).

Figure 10-2g. Equivalent angles.

Figure 10-2h. The angles (A1,P1,1)

and (A2,P2,i) are not equivalent.

Example 10-2c. Construct the angles in standard position

denoted by the symbols (0,X,i), (0,X4I), and (0,X,-4).

Construct two other angles which are co-terminal with each of

these angles.

1

[sec. 10-21
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Solution: The solutions are shown in Figure 10-21. Recall

that the length of the circumference of the unit circle is 27r.

Fgure 10-21. The angles (0,X,1), (0,X,117),

and two angles which are co-terminal with each.

The addition of paths suggests how angles are to be added.

The following statements define the addition of two angles and

the multiplication of an angle by a real number c:

(0,X,01) + (0,X,02) = (0,X,01 + 02)

10-2b. c.(0,X,O) = (0,X,c0).

The properties of these operations follow from the properties of

the corresponding operations on the real numbers.

It is now clear that an angle (0,X,O) in standard position

is completelidetermined by the single real number O. Hence-

foAh, we shall speak of the angle 0 and mean thereby :the

angle (0,X,0). The sum of the angles 01 and 02 is 01 + 02;

the addition of angles has all of the properties of the addition

of real numbers. Furthermore, c times the angle 0 is the

angle c0; the multiplication of angles by a real number has all

of the properties of the multiplication of real numbers.

(sec. 10-2]
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Exercises 10-2

1. Given a unit circle with center A and a point P on it.

Construct the angles.

(a) (A,P,r) (d) (A,P,2)

(b) (A,P,-45,1) (e) (A,P,-4)

(c) (A,F,T,S) (A,P,-1.5).

2. Construct the following angle.Win standard position.

(a) (0,x,i) (d)

(b) (0,X,r) (e) (0,X,45E)

(c) (0,x,-541) . (04X,4)

3. Find two positive angles and two negative angles whichlare

co-terminal with each of the angles in EXercise 2.

4. Construct the following angles in standard position and find

one negative angle which is co-terminal with each one of

them.

(a) 0

(b) :16

(c) :14.7"

(d)

(e)

(f)

(g) Af-r

(h) 5.61

(i)

kr

37

(0)

(p)

(q)

(r)

7rir_

117

27

16.0

[sec. 10-2]
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10-3. Radian Measure.

We have defined the signed angle (A,P,A) in terms of the

path (P,A) on the unit circle whose center is A. The real

number A is called the radian measure of the angle (A,P,A):

It follows from the definition of equivalent angles given in

Section 10-2 that any two equivalent angles (A1,P1,A1) and

(A2,P2,A2) have the same radian measure A, where

The statement "the angle A" usually ns "the signed angle

in standard position whose radian Tr 0, Of course there

are infinitely many other angles th, hn he same radian

measure A.

The radian measure of angles

is especially useful because there

exists a simple relation between

the length of an arc of a circle

and the radian measure of the angle

subtended at the center of the

circle. Figure 10-3a shows an

arc PIQ' of length s on a

circle of radius r, and the

corresponding arc 20. of length

A on a circle of radius 1. By

a theorem on similar sectors of Arc s on a circle of radius r.

circles, we have

Figure 10-3a.

arc Ps arc PIQI
1 -r or A =

But A is the radian measure of the angle formed by the rays
-->

API and AQI. Thus, the formula

10-3a =
r

gives the radian measure of the angle in terms of radius of the

circle and the length of the intercepted arc. Formula 10-3a can

be stated also in the form

10-3b s =

(sec. 10-3)

1 1
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Pormula 10-3b gives the length of an arc in terms of the radius of

circle and the radian measure of the subtended angle.

Example 10-3a. Find the radian measure of the angle subtend-

?.d at the center of a circle of radius r by one-fourth of the

3ircumference.

Solution: The length of the circumference of a circle of

radius' r is 2rr, and one-fourth of the circumference is Y.
Tr

r
By Equation I0-3a, 0 =--

r 2'

EyvT1.2 10-3b. An arc ,)f radius 10 subtends un

angle of 2.5 radians at th Ai.cer. Find the length of the aro.

Solution: By Equation 10-3b, s = 10 x 2.5 = 25. The reader

should draw a figure.

Exercises 10-3

1. Compute-the radian measures of the angles determined by the

following values of s and r.

(a) s = 17, r = 5

(b) s 10, r = 5

(c) s.. 8, r = 10

(d) s kr, = 4

(e) -s 2, r = 5

(f) s 3r, r = 5

(g) s 6r, r = 10

(h) s= r, r 1

2. Compute the lengths of the arcs determined by the following

values of r and Q.

(a) r = 5, 8 = 0.2 (e) r = 10, 8 = 2.7

(b) r = 5, 0 = (f) r = 10, 0 =

(o) r = 5, 0 = 2 (g) r = 10, 8 . 3.2

(d) r = 5, 0 = (h) r = 10. 0 41-r

112
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3. On a circle of radius 24 inches, find the length of an arc

subtended by a central angle of:

2
(a) radians .

(b) 4 radians .

(c) 4 radians .

4. Find the radius of a circle for which an arc of 15 inches

long subtends an angle of:

(a) 1 radian . (c) 3 radians

(b) ; radians .

10-4. Other Angle Measures.

The radian measure of angles was treated in the last Section.

The size of an angle (A,P,A), is determined by the length of the

path (P,A). In the radian system of measure, the unit of length

used in measuring the length of the path is the length of the

radius of the circle (see Equation, 10-3a).

The circumference of

circle contains 2r of thes:-::1

units.

Another system of mea.

can be obtained by using the

length of the circumference as

the unit length for paths.. The

angle stf:rtended by an arc one

circumference in length if. ealle4t.

one revolution. Since omic.ircurn-

ference subtends an angle 'off 2r

radians or 1 revolution, vie

have 1 revolution = 2r ralrw

r

Figure 10-4a.
An angle e of one radian.
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1
A third system of measure results from using .1E-6 of the

circumference of the circle as the unit of length. The angle

1
subtended by 76-6. of the circumference is called one degree.

Since one circumference subtends an angle of 360 degrees or 1

revolution or 2r radians, we have the following basic statement

of equivalents:

10-4a. 1 revolution = 2r radians = 360 degrees.

The degree is further subdivided into 60 equal parts called

minutes (abbreviated min. and denoted by 1, as in 101); the

minute finally is divided into 60 equal parts called seconds

(abbreviated sec. and denoted by ", as in 20"). Thus,

10-4b 10 = 601, 11 = 60".

It is customary to measure angles in degrees, minutes, and

seconds in surveying and in the solution of triangles. The radian,

however, is the simplest unit for measuring angles in those

problems which involve the differential and integral calculus.

Example 10-4a. Find the measure of each of the following

angles in the other two systems: ir radians, rev., 1500 .

Solution: From Equation 10-4a,
1

Tr radians = 1800, r = rev.

or i radians = 300, =
1E 17 rev.

Similarly,

1 rev. = 2r radians,. 1 rev. = 3600

37 rev. = 3r radians, rev.

o 1 0 7
,

and s..-60 rev., 1 = nu radians

5 571.

1500 n rev., 1500 = -6- radians

[sec., 10-4]
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Exercises 10-4

1. Express the following in degrees.

(a) 3 revolutions

(b)- 37 revolution

(c) .; revolution

(d)- revolution

(e) .125 revolution

(f) .833 revolution

(g) -1.5 revolutions

(h) revolutions

2. Express thd following in revolutions.

(a) 135° (e) 67°30'

(b) -6o° (f) 930°

(c) 21o° (g) -485°

(d) -15o° (h) 360°

3. Express the angle as a multiple of r radians.

(a) 3o° (g) -112°401

(b) -25 (h) -315°

(c) -16o° (1) -18o°

(d) 135° (i) 3oo°

(e) 36° (k) -90°

(0 75°301 (i) 88o°

4. Express the following in degrees.

(a) 26 (g)

(b)
. (h)

(c) 4r, (1)

:14E.

-1 751.

(a) .--fuir (j)
3r

(e) =ii (k) 2

(f) 172 GO -3.6
15 (sec. 10-4]
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In a triangle, one angle is 360 and another is 4 r radians.

Find the third angle in radians.

6. Through how many radians does the minute hand of a clock

revolve in ko minutes?

10-5. Definitions of the Trigonometric Functions.

We shall define the trigonometric functions in this sectin,

Some functions, such as the logarithmic and exponential functions,

have =ernes; the trigonometric functions also have names. The

aituation 'is sometimes aonfusing because several different but

closely related functions have been.given the same name. First

we shall define the trigonometric functions of angles in standard

position. Next, we shall define the trigonometric functions of

.arbitrary angles, and finally we shalll define certain additional

trigonometric functions which.are closely related to the trigono-

Metric functions Of angles.

Definition 10-5a. Let (0,X,A) be any angle in standard

position, and let (x0,y0) be the intersection of its terminal

side with the standard unit circle. Then

sine of (o,x,e) = yo

cosine of (0,X,A) = xo

YO
tangent of (0,X,A)

xn
cotangent of (0,X,A) =

YO

1
secant of (0,X,A) =

cosecant of (0,X,A) =

sin A = yo

cos G = x0

YO
tan A provided x

0
0

0

0
cot A = provided yo / 0

YO

1
sec A = 3c- provided xo / 0

0

1
csc Q = provided yo / 0.

YO

Izec 10-5]
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where the statements on the right are abbreviations for the state-
ments on the left.

These definitions do not enable us to calculate these six
functions except in a few special cases since it is usually not

possible to find the coordinates of a point on the terminal side
of the angle (0,X,G). In certain impuftant specLal cases, how-

evr, the calculation is possible as shown in the following

examples.

Example, 10-5a. Find all six trigonometric functions of 30°.

Solution: Figure.10-5a shows

Athe angle (0,X,30°). The terminal

lbside of this angle intersects the
'

2 2
standard unit circle in the point

(LT 4). Then MI/
sin 22:° ;.* cot 30° =

cos =0° =

tan .20° = csc 300 . 2 .

Example 10-5b. Find all six trigonometric functions of 1200 .

sec 30
Figure 10-5a.o 2 Nr3-=

The angle (0,X,30°).

Solution: Figure 10-5b shows

the angle (0,X,I20°). The terminal

side of this angle intersects the

standard unit circle in the point

, 1 v. Then

sin 120o = cot 120° =-

cos 120 =0 1
sec 120° = -2-

tan 120° = - NTT
Figure 10-5b.

csc 120o 2 13
--7r--* The angle (0,X,120Q).

117
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Example 10-5c. Find all six trigonometric functionF

Solution: Figure 10-5c

the angle (0,X,270°). The termii.ai

side of this angle intersects the

standard unit circle in (0,-1).

Tan 2700 and sec 2700 are not

defined since x = C. The other

values are

sin 270° = -1 cot 270°

cos 270° = 0
o

csc 270

= 0

563

270°.

(0J0

Figure 10-5c.

The angle (0,X,270°).

Definition 10-5b. Let (A,P,0) be any angle, and let

(0,X,G) be the unique angle in standard position to which it is

equivalent. Then

sin (A,P,0) = sin (0,X,0) cot (A,P,0) = cot (0,X,G)

cos (A,P,G) = cos (0,X,G) sec (A,P,G) = sec (0,X,G)

tan (A,P,G) = tan (0,X,G) csc (A,P,G) = csc (0,X,G).

If we pair with each signed angle (A,P,G) the real number

sin (A,P,0), we define a function whose domain is the set of all

signed angles. It follows from Definition 10-5a that its range

is (x: -1 < x < 1). This function is denoted by sin 0, and 0

is most commonly measured in degrees. Pairing cos (A,P,G) with

(A,P,G) defines a function whose domain is the set of all signed

angles and whose ran"ge is (x: -1 < x < 1); it is denoted by

cos G. The functions tan 0, cot 0, sec 0, and csc 0 are

defined in a similar manner. The functions sin 0, csc 0

are called the six trigonometric functions.

Theorem 10-5a. Let 0 be any angle in standard position

whose terminal side does not lie along one of the axes, and let

P(x,y) be any point on its terminal side. Then

[sec. 10-5]
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sin 0 =

cos 0 =

17-777
tan 0 .

Proof: Let r be the

distance fram 0 to P. Then

r = "x2 + y2. The equation

of the line through 0 and P

is

where (x0,y0) is the point at

which this line intersects the

standard unit circle.

The point P(x,y) is one

of the intersections of this line

with the circle x2 + y2 = r2 .

The two intersections are found

by volving the following system:

X2 + y2 = r2

YOy = x.
xO

cot Q = 4

sec A =

4T---7
csc -

Figure 10-5d.
The figure for
Theorem 10-5a.

The two solutions are (rx0,ry0) and (-rx0,-ry0) (remember that

xo2 + yo
2

1). Since a ray lies entirely in one quadrant, the

signs of the coordinates of P are the same as the signs of the

coordinates of (x0,y0). It follows that the coordinates of P

are (rx0,ry0). Thus

1 1 9

[sec. 10-5]
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x = rx
o, =

ryo

x =
0 r 2

x + y

v x- + y-

Then, by Definition 10-5a,

sin = yo = ,

.N/x2 + y

and the other statements in the conclusion of the theorem are

obtained in the same way.

Remark: In the course of the proof of the last theorem, we

proved the following important fact: If (x0,y0) is one point

on the terminal side of an angle, then all points on this terminal

side have coordinates of the form

10-5a (rx0,ry0) r > 0.

We shall now define a second set of trigonometric functions.

'This second set is highly important in more advanced mathematics

and also in this course. This second set of functions is so

closely related to the first set that the two are often confused.

Let (0,x,g) be an angle in standard position, and let

be its radian measure. If we pair with the real number 0, the

real number sin (0,X,G) as defined in Definition 10-5a, we

define a function whose domain is the set of all real numbers and

whose range is (x: -1 < x < 1). This function is obviously quite

distinct from the function defined in Definition 10-5b. The

domain of the former function is the set of all signed angles, but

the domain of the present function is the set of all real numbers.

It would be appropriate to denote the former function by

sin (A,P,A) and the latter function by sin G. Unfortunately,

both are denoted by sin g, but it will usually be clear from the

context which is intended. It will usually be true that sin 600

means the sine of the angle whose measure is 60o , whereas,.

[sec. 10-5]
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sin means the sign of the number

In the same way, we define the functions cos (;), tan (;),

cot (;), sec (:), and csc (;), whose domains are the set of all

real numbers. If (;) is the measure of (0,X,Q) in degrees,

and if we associate with the real number (;), the real number

sin(0,X,O, we have another function whose domain is the set of

all real numbers. This function is closely related to the one

already defined, and it will not be considered further in this

course.

The definitions of the six

trigonometric furictions can be

stated in a special way that is

highly useful for an acute angle

in.a right triangle. Let A,B,C

be a right triangle as shown in

Figure 10-5e, and let M denote

the angle at the vertex A. Figure 10-5e.
Functions of an acute angle.

Theorem 10-5b. If M is the angle at the vertex A of the

right triangle shown in Figure 10-5e, then

sino: _ a opposite side
c hypotenuse

cos b adjacent side
cc = = hypotenuse

tan a orsite side
cC = -

a jacent side

cot b adjacent side
cC

a opposite sioe

hypotenuse
seg CC b adjacent side

c hypotenusecsc
-a- opposite side

1 2 i

[sec. 10-5]



Proof: In order to find the

trigonometric functions of cC ,

we must first take an equivalent

angle in standard position.

Figure 10-5f shows such an angle.

The point P(b,a) is one point

on the terminal side of this angle.

The statements in the conclusion

of the theorem now follow from

Definition 10-5b and Theol,m 10-5a

(remember that c =.1a2 + b2).

Exercises 10-5

567

Figure 10-5f.
An angle in standard

position equivalent to LA.

1. Sketch the angle 0 in the standard position and find sin 0,

cos 0 and tan 0 when the following points are on the

terminal side of the angle Q.

(a) P(-4,3) (e) P(-2,4)

(b) P(5,-12) P(-7,-24)

(c) P(-1,-1) (g) P(31-5)

(d) P(2,3) (h) P(4,1)

2. In each of the following sketch the angle and find the

other five functions of Q.

(a) tan 0 = 0 in quadrant I

(b) cos 0 0 in quadrant IV

(c) sin Q = 0 in quadrant TV

(d) tan 0 = 0 in quadrant II

(e) cos 0 =4, 0 in quadrant III

(0 sin 0 = 0 in quadrant II

[sec. 10-5]
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3. Let P be the set (a, b, c) and let Q be the set

(sin cC cos cc , tan cc , tan/53, cosrg, sin,) . It can be proved

that if any 2 members of set P are given, then all the

other members of P and Q can be expressed in terms of

these given members .

(a) If a = 3

b = 4

tan/e = ?
cos m = ?

c = ?

(b) If b = 12

c = 13

a = ?

= ?
tan cC = ?

(e) If

(d) If

a = 5
c = 11

b = ?

cos cC = ?

tan/9 = ?

sin cc = ?

a = 12

b = 7

c = ?

sin cc = ?
cosg = ?

tan cC = ?

14.. Let P and q be the sets given in Problem 4 It can be

proved that if a member of set P is given and if a member

of set Q is given, then all other members of P and Q can

be expressed in terms of the given members.

(a) If a = 12 (b) b = 15 (c) c = 20
3cos m = ... sin cC = 4 tan,49 = 2

b = ? c = ? a = ?

c = ? a = ? b = ?

tan,a' = ? coso0 = ? cos m = ?
sin m = ? tancC = ? sin M = ?

(d) If c = 8 (e) a = 2
(f)

b = 10

sin cC = .8- tan cC = 1.8 cos, = .8
b = ? b =..? a 7 ?
a = ? c = ? c = ?

cos,9 = ? sing = ? sin cC = ?

tan cc = ? cos ct = ? tan/dr = ?

[sec. 10-5]
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10-6. Some Basic Properties of the Sine and Cosine.

In order to simplify the statements of some of the results in

this section, it will be convenient to introduce the notion of

primary angle.

Definition 10-6a. An angle (0,X,0) in standard position is

called a primary angle if and only if .0 < e < 3600 (or the

equivalent condition in other units of measure).

Theorem 10-6a. Let (A,P,0) be any angle. Then

(sin 0)2 + (cos 0)2 = 1.

Proof:- Let (0,X,0) be the unique equivalent angle in

standard position. Let (xo,yo) be the point where the terminal

side of (0,X,A) intersects the standard unit circle. Then

2
x + y

2
= 1

0 0

xo = cos 0, yo = sin 0

(sin 0)2 + (cos 0)2 = 1,

and the proof is complete.

Theorem 10-6b. (Converse of Theorem 10-6a.) Let x and y
0 0

be any two numbers such that x02 + y02 = 1. Then there is one

and only one primary angle (0,X,0) such that cos 0 = xo,

sin 0 = yo.

Proof: The point P(xo,yo) is on the standard unit circle.

Let (0,X,0) be the primary angle whose terminal side passes

through the point P(x0,y0). Then cos 0 = xo and sin 0 = yo.

If (0,X,0') is any other primary angle, then its terminal side

does not pass through P(x0,y0). Thus, it is not true that

cos AI = xo and sin 01 = yo. The proof of the theorem is

complete.

1

[sec. 10-6]
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Theorem 10-6a emphasizes the following corollary, which has

already been observed rom the definitions in Section 10-5.

Corollary 10-6a. For all angles (A,P,Q)

- 1 < sin g < 1

- 1 < cos G < 1.

Corollary 10-6b. If yo is any number r,uch that -1 < yo < 1,

there are exactly two primary angles (0,X,Q) such that sin g

y
o*

These angles have ,N/Il - y02 and -.11 y02 for their

respective cosines.

Proof: The line y = yo

intersects the standard unit

circle in the two distinct points

2 N

P1('11 ,Y0)

P2( Y02 '10)"

There are two primary angles

g
1

and g
2

whose terminal Figure 10-6a.
Two angles forsides pass through P1 and P2. which sin e = yo.

Then

cos Ql =11 - y02 and cos Q2 = - l - y02 .

Corollary 10-6c. If xo is any numbei, such that -1 < xo < 1,

there are exactly two primary angles (0,X,Q) such that
2cos g = x

O.
The sines of these angles are - x

0
and

- 2 respectively.
x0

125
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Proof: The line x ==x- intersects the circle x2 + y
2 = 1

..:La the two distinct pointz

P (x N/1 - P (x -
1 0' 0 " 2 0'

Then:, ;7-e two primar7

av41es (7.1,01) and

(0tX,A2) whose terminal

-des pass through P1

P2. Then

"7-a G1 "I/1 x0
2

sin 0
2

= - x
2

0

Figure 10-6b.
Two angles for
which cos 9 = xo.

Corollary 10-6d. There is exactly one primary angle whose

sine is 1, and it is 900: there is exactly one primary angle

whose cosine is 1, and it is 0°. There is exactly one primary

angle whose sine is -1, and it is 2700; there is exactly one

primary angle whose cosine is -1, and it is 1800 .

Let 0 and 0 + n-360°, where n is an integer, be two

angles in standard position. These two angles have the same

terminal side (they are called co-terminal angles), and hence,

the six trigonometric functions of 0 + n360° are equal respec-

tively to the six trigonometric functions of Q. Hence, if

sin 0 = yo, cos 0 = xo,

then

sin (0 + n.360°) = yo, cos (A + n.360° ) = X
0

for n = 0, -
+

1, -
+

2, .

1
10
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Llae.:.-3. 10-6

1. Sketch all theanE:..71- '-ee- 0° and 360° in stalL- ..rd

position which sat__...) 2 ,,'._aowing conditions and &,T2 the

values of the othe. f-L-t, for these angles..

24 7(a) sin Q . I tan A =

(f) sin

H cos Q

(d) sin- = 7::
VT

() sin Q .
3

4
(b) cos Q

5

(c) tan Q -2

2. In what quadrant will r-tnal sid2 of Q lie if:

(a) sin Q and cos =--_h positive?

(b) tan Q is positiv an, :os Q is negative?

(c) sin Q is positiw tan Q is negative?

(d) cos Q and tan g - both negative?

(e) sin Q, cos Q and Q are all negative?

3. Find the value of cos
2

sin
2

Q when tan Q = 3

and cos Q is negative_

4. Find the value of 2 ta_
when cos Q and tan Q

1 - tan2 Q

is positive.

Q
5. Prove the relation tan g prcrided 8 / (2k+ 1)90°

where k is an integer.

6. Use the relation sin2 cos
2
0 = 1 to prove:

(a) 1 + tan2 e = sec2 8 [0 / (2k + 1)90°] .

(b) 1 + cot2 e = csc2 e [e k '1800] .

7. Prove that the range of the tangent function is the Set of

all real numbers.

10-,6]
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10-7. Trigonometric Functions of Special Angles.

The values of tha trigonometric functions can be obtained

simple geometrical conaiderations for certain special angles.

These are the angles for which the coordinates of the point

(x0a0), where the terminal side intersects the unit circle, can

be computed. We list these angles A .in a table which shows th.-

degree measure of A, the radian measure of A, the coordinatez

(x
0'
y
0
), and the values of the six trigonometric functions.

128
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Table 10-.7E_ . 2rigonometric function pf spec Jal an les

a) 0
4)

AnT6

a) CD
h_mo in

1 g's
( X-c- yo) COS e SIN e Tcn 9 Se: Fi I Csc 9 Cot 0

0 0 I 0 a
Un-

defined
Un-
defined

30
Tr
-o-

1

,-) 2
1

2
1

TT 2

45
ir
71 (VI_ 1--2_ )a 1 ., 2 2 1 12- .1E 1

60 i i 13-
( -2- , -2-)

I

2
.../.5_

2
_IT 2

2r

13-

90 IT
2

( 0 , 1) 0 1

Un-

defined

Un-

defined
1 0

12 0 '-11-3 (-± .1:37.) 1
2 , 2

--1-2
../S-

2- -713 -2
2

15-

135
311
4

.1-_;..-

___ , 21 2 2 -1
2

..72:-
2--

.12
-1

15 0 5 76 ( ICI I) -"'/3--2 , 2 2
1 1

:it-
2

..,-/T
2

Un-

defined
180 U , 0 ) -1 0 0 -I

Un-
defined

210 6
1 1

2 , 2 '
1-3-

2

1

2
1

3
-2

225 5 7
4

ii2- .:12- \
-2- 1 -ff I

ii
2

..(2-
2

1

2_ 2
I

240 4 TT
3

1

(-2 ,
.7:4

.---7:-)

1T - -3 2 I

0270 3TT
2

(0 ,-1) 0 -I
Un-

defined

Un-

defined
-I

300 5----r-T
3

( 1 =11-) I
2 -1-3-- 2 1

315
. 77

4
N121 1-2-

,-,--;..i2, ::_. 2
172-

-1
2

.2

,15:
2

7
-I

330
_

Er- WI -1-) I 'If -.12

[sec. 10-7]
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It is necesHcry 1:7. memorize the res-..i.Lts in Table 10-7a,

but t is imptant lazaln the methods JIr -Wnich these results

are abtained.

Consider first r,he

. 0°, 90°, 16. ant 27:-.
Figu.. 10-7a L.nows

(x0,-4 on the term=a:

of each of these angL:a.7 (0)

entrfs in Table 107,...f:ar these

angl:as are obtained t-.7- az:plying

the .:Lefinitions in Ser;tfon 10-5.

Observe that certain of tf_:e

trigonometric functions of these

angles are undefined.

The angle 225°, shown in

Figure10-7b, will be used .t-o

illustrate the method of finding

the trigonometric functions of

the special angles 45°, .135°,

225°, and 315°. The triangle

OPD is an 1sosceIa:-7- right-tri-

angle. Since the 2E=Igth

of its hypotenuse i 1, we

.find IODI = IDPI V; and

(0,1 )

-7-

(0,-1)

Tftgure 10-7a.
The sp,-2.cla1,ang1es Ow,

900, 1900, and 270°.

Figure 10-7b.

the coordinates 1:,f P are The _special angle 2250 .

Ar aT-LT21=tion of tme tefinL.-tions leads to the results

gaven in the ctzb.li__ rta: trigamometrt: functions of 45°, 135°,

and 3150 aa:', be ed in a. strrila:r]marr.
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The angle 1200, shown in

3igure 10-7c, will be used to

illustrate the method of finding

the trigonometric functions of the

special angles 600, 120°, 240°,

and 300°. The triangle OPD is

a right triangle whose acute angles

are 300 and 60°. Since IOPI =

we find 1ODI =4. Then

IDPI
If

'
= and the coordinates

2
1 -/T\

of P are (--, An

application of the definitions

leads to the results given in the

able. The trigonometric functions

of 60°, 240°, and 3000 can be

obtained in a similar manner.

The angle 330°, shown in

Figure 10-7d, will be used to

illustrate the method of finding

the trigonometric funations of

30°, 150°, 210°, ant. 3300 .

The triangle OPD is again a tri-

angle whose acute angles are 300

and 600. Then I0D ani_

taPI = ;It, and the iaordinat

of P are ( An

.appllcation of the definition:

leads to the result given in

Table 10-7a. The trigonometric

functions of 300, 1500, and

-21o° can be obtained in.-a similar

manner.

131
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special angle 120°.
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The special angle 330r".
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Exercises 10-7

1. Evaluate the following:

(a) sin 150° tan 2100 - cos 135- sin 240°.

(b) cos 90° - sin 300° + tan 225° - cos 150°.

(c) sin 270° + tan 180° cos 90°

2. 'Find all the functions of the folLowing angles wittout using

a table.

(a) 210° (c) 315°

.(b) -135° (d)

3% Show that cos2 0 + sin
2 = 1) fvr:

(a) Q= 45°

(b) = 150°

(c) Q = 330°

(c2. t.`., =4; racii=ns

(e) = 4- radians

(f) = 4:ractians.

4. Show that:,

(a) sin (60° + 60°) / sin 60° +.1.7in 600

(b) cos (90° + 60°) COB 90° -1- cos 60°

(c) sin (1800 + 60°) / sin 18,0°-,- ztn 60°

(d) cos (150° - 60°) / cos 150° 7.7ms 60°

(e) sin (300° - 120°) / sin 300° sin 120°.

5. Ve:rify the following:

(a) 1 - cos2 60° = sin2 60°

(b) sin 60° cos 30° + CO3 6c r 300 ..1

(c) cos 60° cos 30° - sin 607-- 70° 0

:(d) cos 30°
+ cos 60°

2

.(e) sin 30°
cr 60°

(f) 2 sin 459 cos 450 = 1

[sec. 10-7]
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6. Which of thE.- following statements are correct? Justify your

answer.

(a) sin g = 3

(b) sin g tan g
' cos g

(c) sin 300 + sin 600 = sin 900

(d) cos2 45o ain,2
45 = sin 900

(e) cos 45° = cos 900

(f) sin 45° cos 45° . sin 90°

(g) sin 300 = .. sin 900

(h) sin2 300 + cos2 3300 . 1

45o sin 45°,
cos "315'

(j) cos 30c' + 2 cod 600 = cos 1500

10-8. Tables of Trigonometric Functions.

In Section 10-7, we explained how to find sin g, csc

for certain special values of G. There is no elementary method

for computing the six trigonometric functions of an arbitrary

angle G. In a typical case, the six trigonometric functions of

are irrational numbers which would be represented by non-

terminating decimals. These values can be calculated to any

desired degree of accuracy by methods developed in calculus.

Ts:ales of the trigonometric functions are available. Table 10-8a

gives sines, cosines, and tangents for the angles 10, 20.,

..., 900
We shall now describe certain characteristics of trigonometric

tables.

(1) Since the values of the trigonometric functions are

usually irrational numbers, and since the tables give these values

only to three (or four, or five) decimal places, the values in the

tables are usually not exact. Table 10-8a is correct to three

[sec. 10-8]
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decimal places, but tables correct to five, seven, or more decimal

places are available for calculations which require greater

accuracy.

(2) Table 10-8a gives sines, cosines, and tangents of

the angles 0°,
10, 900, but it does not give these

functions for other angles such as 37.8°. It will be shown that

the approximate values of the functions of these angles can be

obtained by interpolation.

(3) Table 10r8a does not contain any angles A such that

< 00 or 0 > 90°. We shall show that the approximate values

of the ,sines, cosines, and tangents of all angles can be

obtained from Table 10-8a.

First, we shall give some examples which involve interpolation.

Linear interpolation has been explained already in Chapter 9 on

logarithms and exponents, and the theory will not be repeated here.

Example 10-8a. Find cos 37.8°.

Solution: From Table 10-8a we find

cos 370 Z.. .799

cos 38° .788

x .8
or x = -8.8

cos 37.8° Z: .790.

It is important to observe that cos A decreases as 0

increases.

131
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Table 10-8a.

De-
grees Radians Sine

Tan-
Cosine gent

0 .000 0.000 1.000 0.000
1 .017 .018 1.000 .018
2 .035 .035 0.999 .035
3 .052 .052 .999 .052
4 .070 .070 .998 .070
5 .087 .o87 .996 .088

6 .105 .105 .995 .105
7 .122 .122 .993 .123
8 .140 .139 .990 .141

9 .157 .156 .988 .158
10 .175 .174 .985 .176

11 .192 .191 .982 .194
12 .209 .208 .978 .213
13 .227 .225 .974 .231
14 .244 .242 .970 .249
15 .262 .259 .966 .268

16 .279 .276 .961 .287
17 .297 .292 .956 %306
18 .314 .309 .951 .325
19 .332 .326 .946 .344
20 .349 .342 .940 .364

21 .367 .358 .934 .384
22 .384 .375 .927 404
23 .401 .391 .921 .425
24 .419 .407 .914 .445
25 .436 .423 .906 .466

26 454 .438 .899 .488
27 .471 .454 .891 .510
28 .489 .470 .883 .532
29 .5o6 .485 .875 .554
30 .524 .500 .866 .577

31 .541 .515 .857 .601
32 .559 .530 .848 .625
33 .576 .545 .839 .649
34 .593 .559 .829 .675

35 .611 .574 .819 .700

36 .628 .588 .809 .727
37 .646 .602 .799 .754
38 .663 .616 .788 .781
39 .681 .629 .777 .810
40 .698 .643 .766 .839

41 .716 .658 .755 .869
42 .733 .669 .743 .900
43 .751 .682 .731 .933
44 .768 .695 .719 .966
45 .785 .707 .707 1.000

De-
grees Radians Sine

Tan-
Cosine gent

46 0.803 0.719 0.695 1.036
47 .820 .731 .682 1.072
48 .838 .743 .669 1.111
49 .855 .755 .656 1.150
50 .873 .766 .643 1.192

51 .890 .777 .629 1.235
52 .908 .788 .616 1.280
53 .925 .799 .602 1.327
54 .942 .809 .588 1.376
55 .960 .819 .574 1.428

56 .977 .829 .559 1.483
57 .995 .839 .545 1.540
58 1.012 .848 .530 1.600
59 1.030 .857 .515 1.664
6o 1.047 .866 .5oo 1.732

61 1.065 .875 .485 1.804
62 1.082 .883 .470 1.881
63 1.100 .891 .454 1.963
64 1.117 .899 .438 2.050
65 1.134 .906 .423 2.145

66 1.152 .914 .407 2.246
67 1.169 .921 .391 2.356
68 1.187 .927 .375 2.475
69 1.204 .934 .358 2.60 5

70 1.222 .940 .342 2.747

71 1.239 .946 .326 2.904
72 1.257 .951 .309 3.078
73 1.274 .956 .292 3.271
74 1.292 .961 .276 3.487
75 1.309 .966 .259 3.732

76 1.326 .970 .242 4.011
77 1.344 .974 .225 4.331
78 1.361 .978 .208 4.705
79 1.379 .982 .191 5.145
80 1.396 .985 .1714 5.671

81 1.414 .988 .156 6.314
82 1.431 .990 .139 7.115
83 1.449 .993 .122 8.144
84 1.466 .995 .105 9.514
85 1.484 .996 .087 11.43

86 1.501 .998 .070 14.30
87 1.518 .999 .052 19.08
88 1.536 .999 .035 28.64
89 1.553 1.000 .018 57.29
90 1.571 1.000 .000 unde-

fined

[sec. 10-8]
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Example 10-8b. If sin A = .602, what is A?

Solution: From Table 10-5a we find

sin 36° :tt: .583

sin. 37° .602

x or-

Thus, if sin = .600, IM-11 35.90 . From Corollary 10-6b

we know that there is another 7orimary angle A such that

sin Q = .600. A little laterwe shall show how to find this

second primary angle. All_ other solutions of the equation

sin g = .600 can be obtained !Irom the two primary solutions by

ihe method explained at the of Section 10-6.

We shall now explain haw 7te trigonometric functions of any

angle can be obtained from a table which gives the trigonometric

functions of angles,from 00 tm 90°. We observe first that the

functions of any angle are ===11 to the functions of a co-terminal

angle which lies between 03 sTlci 360°. For example, sin 473°

= sin 1130. The problem i= reduced to finding the functions

of all angles between 0° 360°. If A is one of the special

angles 00, 900, 1800, ar...rE. 270°, .itls functions can be obtain-

ed from Table 10-7a. For each angle A, where 0°S A < 360°

and A is not one of the snecial angles, an angle AR called the

reference angle,of Q is defined by Table 10-8b.

Table 10-8b. Tile reference an le of A

A

The reference angle

AR
of A

0
o < A < 907" AR = A

90° < A < lEd° g . 18o° - g
R

180° < e < 270° A
R

= A - 1800

2700 < A < 3530 A
R

= 3600 - A

1 3 (3

tsec. 10-8]



Figure 10-8a. Reference angles for the angle e.

Figure l0-8a shows the reference angle OR for angles 0 in
quadrants II, III, and IV. The circles in this figure are the

standard unit circles. Let P(x0,y0) be the point where the

terminal side of the reference angle OR intersects the unit
circle, and let Pt be the corresponding point on the terminal

side of O. The triangle OPID! is congruent to the triangle

OPD in every case. Thus, the coordinates of Pt are
xo, yo).

Theorem 10-8a. Let 0 be any angle such that 00 < 0 < 360°
and such, that 0 is not an integral multiple of 900, and let

0
R be the reference angle of O. Then

sin 0 = -+ sin 0R cot 0 = -+ cot 0R
cos 0 = -+ cos 0R sec 0 = -+ sec 0R

+tan 0 = t tan 0
R csc 0 = - csc 0

R

37
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Proof: Examine Figure 10-8a. For every angle Q of the

kind specified in the theorem, sin 0 . yo or sin 0 -yo.

But sin OR = yo. Thus, either sin 0 = sin OR or sin 0

= - sin 0
R.

The other statements in the conclusion of the theorem

can be established in the same way.

Table 10-8c shows the signs of the six trigonometric functions

for angles in the four quadrants. The results given in this table

follow from the definitions in Section 10-5.

Table 10-8c. Signs of the Tri onometric Functions

Trigonometric
Functions

Quadrants

I II III IV
.......

sin + + - -

cos + _ _ +

tan + - + -

cot + - + -

sec + - - +

csc + + _ _

Theorem 10-8a and Table 10-8c enable us to find the six

trigonometric functions of any angle from tables for all angles

from 0° to 90°. The method will be explained by means of

examples.

Example 10-8c. Find sin 603° by using Table 10-8a.

1 3 8

[sec. 10-8]



584

Solution: The angles 603°

and 243° are co-terminal; hence,

sin 603° = sin 243°. By Table

10-8b, the reference angle of

243° is 63°. Thus, by Theorem

10-8a, sin 243° = 1: sin 63°.

From Table 10-8a, sin 630 .891.

Since 243° is an angle in the

third quadrant, sin 243° is

negative by Table 10-8c. Thus,

sin 603° = sih 243° = - sin 63°

- .891. The entire solution,

except for finding sin 63° in

the table of sines, should be

geometrically obvious from

Figure 10-8b.

Example 10-8d. Find tan 328°.

Solution: The reference angle is 320, and the tangent is

negative in the fourth quadrant. Thus, tan 328° = - tan 32°

- .625. The reader should draw a figure.

Example 10-8e. Find cos 4.

Solution: Since is the radian measure of the angle, the

reference angle is g radians. Also, is an angle in the

second quadrant, where the cosine is negative. Thus, cos

Exa:P:e, 10-8f. Find sin 1046°.

= - cos E., - .866. The reader should draw a figure.

Solution: Since 1046° = 2(360°) 4. 326°, the angles 1046°

and 326° are co-terminal. Thus, sin 1046° = sin 326°. The

reference angle of 3260 is 34°, and sin 3260 is negative

since the angle is in the fourth quadrant. Thus, sin 1046°

= sin 326° =,- sin 34° - .559 .

Figure 10-8b.

Graph of 603
o

and its reference angle.

3
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Example 10-8g. Find cos(-150
o
).

Solution: The angles -1500 and 2100

hence, eos(-150°) = cos 2100. The reference

30°, and the cosine is negative in the third

cos( -150°) = cos 210° = - cos 30° - .866 .

With our tables available we are now equipped to discuss some

examples of a simple and important application of the trigonometric

functions.- the indirect measurement of distances by triangulation.

Example 10-8h. At a point 439 feet from the base of a

brilding the angle between the horizontal and the line to the top

of the building (angle of elevation) is 31°. What is the height

of the building?

585

are co-terminal;

angle for 2100 is

quadrant. Thus,

Solution: In the right

triangle ABC we have r = 90°

M = 31° and b = 439 feet.

In this drawing we seek the

height a of the building.

According to the formula for the

tangent of an acute angle of a

right triangle we have

tan 31
o side opposite a

side adjacent 737

our Table 10-8a gives

tan 310 .601 .

Combining these two equations

we have

a .601

Therefore a 439(.601) 'Z. 264,

so that building is approximately

264 feet high.

(sec. 10-8)
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Example 10-8i. To measure the width of a river a stake was

driven into the ground on the south bank directly south of a tree

on the opposite bank. From a point 100 ft. due west of the

stake,the tree was sighted and the angle between the line of sight

and the east-west line measured. What is the width of the river

if this angle was 60°?

Solution: The point from

which the tree was sighted was

taken due west of the stake so

that the angle RST (Figure

10-8d) would be a right angle.

From the formula for the tangent

of an acute angle in a right

triangle (Section 10-5) and

Table 10-8a we have , tan 60°
1100

Ni5 where r is the required

width of the river.

y=l00Il73 .

The river is approximately 173

feet wide.

t 1S

Figure 10-8d.

Example 10-8j. At the instant when the moon is exactly at

half phase the angle between the line from the earth to the moon

and the line fro:a the earth to the sun is between 89° and 90°.

Show that the distance from the earth to the sun is at least 50

times the distance from the earth to the moon.

141
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Solution: From Figure 10-8e

we see that if the moon is exactly

at half-phase the angle SME is a

right angle. Since angle SEM 59

and 89° <g< 900 , we have

00 <cC < 1
o

. Then the distance

m of the earth to the sun and

the distance s from the earth

to the moon are ve1ated thus

sin a =

and from Table 10-8a

sin Lt < sln 1 o .018

so that

s 91 18 , 20 1

rri N "n1""' = TUUU 375.

ril.) 50s.

Thus the distance from earth to the

sun is at least 50 times- the dis-

tance fram earth to moon.

Figure 10-8e.

The essential step in these examples is the discovery and

construction of a right triangle one of the sides of which is the

length to be measured. In Sections10 and 11 we will learn some

further theorems about the trigonometric functions which will

permit us to use more general triangles in a similar way. Before

this we must discuss the trigonometric functions in more detail.

142
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Exercises 10-8

1. What is the reference angle of each of the following?

(a) 150°

(b) 260°

(c) 161r- radians

(d) 308°

(e) 615°

(0 -98°

(g) -235°

(h) radians

(i) 4. radians

(j) 1.-71. radians
5 .

2. Express the following in terms of the same function of the

reference angle.

(a) sin 165° (k) sin(-195°)

(b) tan 190° (9) sin 305°

(c) cos 222° ni ) tan(-378°)

2r
(d) sjn (n) sin 14-Tr

(e) cos(-1) (0) cos(-4)

tan(-r) (p) tan(-)

(g) sin 340° (q) sin 335°

(h) sin 980 cos(-3r)

(i) tan 462° (s) sin 6000

(j) cos(-160°) (t) tan 241.

3. A wire 35 feet long is stretched from level ground to the

top of a pole 25 feet high. Find the angle between the

pole and the wire.

4. A kite string 200 yards long makes an angle of 70° with
the ground. How high is the kite?

14.3
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5. From the top of a rock which rises vertically 326 feet out

of the water, the angle between the line of sight of a.boat

and the horizontal (angle of depression) is 24°. Find the

distance of the boat from the base of the rock.

6. The edge of the Great Pyramid is 609 feet and makes an

angle of 52° with the horizontal plane. What is the height

of the pyramid?

7. A gun G shoots at T at a range of 5400 yards, and the

shot h_ts at so that angle TGS = 3°. Assume that angle

GTS = 90°. How far from T is s?

8. Find the radius of a regular decazon, each side of which is

8 inches.

9 From a mountaln top 4000

feet above a_fort the angle

of depression_of the fort

is 17°. Find the airline

distance from:the mountain

top to the fort.

10. At a point 185 feet from the base of a tree, the angle of

elevation of the top is 55°. How tall is the tree?

11. From an observation point the angles of depression of two

boats in line 17rith this point are 18° and 280. Find the

distance between the two boats if the point of observation

is 4000 feet high.

12. A building stands on a horizontal plane. The angle of

elevation at a certain point on the plane is 300 and at a

point 100 feet nearer the building it is 45°. How high is

the-building?

13. Find the angles of intersection of the diagonals of a rect-

angle 8.3 feet wide and 13.6 feet long.

(sec. 10-81

144



590

14. The area of an equilateral A is 300 square inches. What
is the area of the inscribed circle?

15. A circle is divided into 7 equal parts. Find the length of
all possible chords whos# end-points are these division points
if the radius of the circle is 7 inches.

16. The minute hand of a cloc4 is 9 inches long. At 7 minutes
after 3 the line joining the ends of the hands is per-
pendicular to the hour hand. How long is the hour hand?

17. If the hands of a clock are 7.4 inches and 4.8 inches,
at what time between 2:00 and 2:10 is the line joining
the ends of the hands perpendicular to the hour hand?

18. Given A ABC with A, 09 and

r known. Let h be the

altitude to a.

Prove: h =
cotrg + cot Y'

a
a

19. A chord 6 inches long subtends a nertain angle at the center

of a circle whose radius is 5 inches. Find the length of
the chord which subtends an angle twice as large.

20. The area of trapezoid ABCD is 4800 square feet. Lower
base AB is 150 feet long, side AD is 47 feot long
and angle A is 57°. Find the otner base.

10-9. Graphs of the Trigonometric Functions.

We have found it helpful in the past to draw the graphs of the
functions under study. Recall that the graph of y = f(x)

consists of the set of points (x,y) in the coordinate plane such
that y = f(x). But it is clearly impOssible to draw the graphs
of those trigonometric functions whose domains are the set of all
signed angles, because we have no scheme for exhibiting graphically
the set of all pairs ((A,P,G), sin(A,P,Q)) . Notice that the first
element in this pair is a signed angle (A,P,O), which is a
geometric object - not a real number.

[sec. 10-9]
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We now recall that a zecond set of trigonametric functions

was defined in Section 10-5. .The domains of these functions are

the set of all real numbers, and it is thus possible to draw theii

graphs-in the usual way. For example, the graph of y = sin x

consists of all points (x,y), where y = sin(0,X,x) and x 'is

considered to be the radian measure of the'angle (0,X,x).

Similar statements hold for the graphs of the other five trigono-

metric functions of real numbers.

It is important to observe that the following statements are

true for every x.

(i) sin(x + 2r) = sin x

(ii) cos(x + 2r) = cos x

(iii) sec(x + 2r) = sec x

(iv) csc(x + 2r) = csc x

(v) tan(x + r) = tan x

(vi) cot(x + r) = cot x

Statements (0 to (iv) follow from the fact that, if x is

the radian measure of an angle, x + 2r is the radtan measure of

a coterminal angle. Statements (v) and (vip follow flL the facts

that the angles having radian measures of x and x-+ r

respectively, have the same reference angle and their tangents

(or cotangents) have the same algebrail: sign.

If for a function f(x) there existn a number p such that

(vii) f(x + p) = f(x)

for all x the function f is said to be periodic. If p is

the smallest positive number for which (vii) is true, the function

is said to be periodic with period ja. Since 2r is the Bmallest

positive number for which statements (0 to (iv) are true for all

x, we conclude on the basis of our definition that the functions

sin, cos, sec and csc are all periodic with period 2r.

Similarly, the tan and cot functions are periodic w:J.th period

r.

.146
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Notice that the curve in Figure 10-9b is congruent to the

graph of y = sin x in Figure 10-9a and is obtainable by shifting

that curve S. units to the left.

Figure 10-9c shows the graph of y = tan x.

IIIMMENIMMEMMINIMMEM AMMON MU
1111111111MINSIMMIMMIIMMINEINEINNIIIIMENUMMII

mallIwrismammmommumummumm.mmommummummmiummommil
MMINOMMENNAMMMINIMMOMMOMMIUMMEMEM
MINIMMMAROWIMMEMEMMINWEEMMMERINIM
MOOMMUMMEMEMMEMMENAMMOMMUMMOMMINI
MIONIMMEMAREMMERMANIVAIMMEMMEMEM A
MIMMINIMUMUMMEMMUMUMMINUMMOMMIA
MMOMMONAMMOIMMEMMEMEMMOMMEMMEMMMAM
MEMEMOUREMMUMMIIMMUMMEMMOMMONNUMMornimmummommmommumw. rpm=
summammummummommummummummum
MOINOMMOMMOMMINWANERMOIMMEMMOMINMO
IIMMEMMIMMENIMMEMMEMMEMINIMMENMEMM
MMEMMMEMEMENIMMWMMNIMMMOMMIIMMEMMEM
EMAIMMOMMERMEMMEMMMINIMEMEMANUMMEM
MMUMMOMMEMEMEMUMEMMINIMENEMUMMEMEM
MOMERMIMMIOMMUMMIANNIMMINIMEMEIMME
MOMEMINIMMEMOMMAMMEMMIONMEMEMINIM
MMEINAMEMMEMMEMINIMMINIMMEIMMISMMEM
MMINIMMINIMMONMEIMMEMMMOMMINIMOM

Figure 10-9

Notice that it is composed'of congruent pieces which have the

3r
vertical lines x = x -

+ 7- as asymptotes.

148
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Exercises 10-9

1. Draw the graphs of each of the following sets of equations
using a single set of axes.

(a)

(b)

Y=
y =

Y =

Y =

(c) Y =

(d)

Y =

=

y =

sin x

sin 2x

COS X

2 cos x

tan x

1
tan -ec

1
sin ..2x

1
cos .nx

(e) y = sec x

y =

(r) y =

Y =

sin x
COS X

(g)

(h)

y = sin x

y = 2 sin x

y = 3 sin X

y = 71 sin x

y = sin x

y = sin 2x

y = sin 3x

1y = sin 7x

y = sin x

y = sin(x + ir;)

y = sin(x +

y = cos(x -

10=10. The Law of Cosines.

One of the most famous of all mathematical theorems is the

Theorem of Pythagoras, which states that in a right triangle ABC,
c
2

= a2 + b
2

.

c2< b2 de. al+ b2 c2 >G2 b2

Figure 10-10a.

[sec. 10-10]
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It is plausible that if 74 is less than a right angle, then c2
_

is less than a2 + b2; and if is greater than a right angle,

: then c is greater than a2 + b
2

. Our next theorem covers all2

three possibilities in a single formula. It refers to any triangle

ABC and uses the notation of Figure 10-10b.

Figure 10-10b.

Theorem 10-10a. The Law of Cosines.) In triangle ABC

c2 a2 + b2 - 2ab cos -74

b2 = a2 + c2 - 2ae cos/g

a2 = b2 + c2 - 2bc cos a

Proof: We introduce a co- B(x,y)

ordinate system in such a way

that 7/' is in standard position

In this coordinate system, C

has coordinates (0,0), A has

coordinates (b,0), and B has

coordinates which we denote by

(x,y). (See Figure 10-10c).

Using the distance formula we have
c2 (x b)2 y2 x2 y2. b2 2xb and

a
2 x2 + y

2
.

It follows that

c2 a2 b2 - 2xb.
[sec. 10-10]
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We also know from Theorem 10-5a that cos 7"... , which
#17;

'2 y
2

is f. Therefore, x = a cose. Substituting a cos efor x

gives us c
2

a
2
+ b2 - 2ab cose.

The other two relations in the theorem can be proved similarly.

R.i7ample. 10-10a: In triangle ABC, a = 10, b = 7, and

32°. Find c.

Solution: By the law of cosines

c2 = 100 + 49 - 140 cos

Using Table 10-8a cos 32° :848 and

therefore, 2
c 149 - 140(.848)

N. 30

Hence, c 5.48

32°.

Example, 10-10b! In triangle ABC, a = 10, b = 7, and

c = 12. Find m .

Solution: By law of cosines

a
2
= b 2 + c 2 - 2bc cos m.

49 144 -
TR3 Z,' .554.Hence, cos m -

2.7.12

Thus, M.% 560 to the nearest degree.

Suppose triangle ABC is a right triangle with right angle

at C, i.e., 71 = 900. In this case, c is the hypotenuse of the

right triangle,and since c'Js 900 = 0, the law of cosines becomes

c
2
= a2 + b

2
. But this is just the Pythagorean Theorem. There-

fore the law of cosines can be viewed as the generalization of

the Pythagorean Theorem to arbitrary triangles. However, we do

not have a new proof of the Pythagorean Theorem here, because our

proof of the law of cosines depends on the distance formula which

was established on the basis of the Pythagorean Theorem

It is worth noting, though, that the law of cosines can be

used to prove the converse of the Pythagorean Theorem. If, in

triangle ABC we know that c2 = a2 + b2, then we must show that

[sec. 10-10]
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= 900 By the law of cosines c2 = a2 b2 - 2ab cos 7' and,

combining this with c2 = a
2

4- b
2

, we obtain cos 7" 0. We know

that 0 <71 < 1800, and the only angle in this range whose cosine

is zero is 900. Therefore, /". = 900 as was to be proved.

Exercises 10-10

1. Use the law of cosines to solve the follpwing:

(a)M = 60°, b = 10.0, c = 3.0, find a.

(b) a = 2 161., b . 8, c = 10, ftnde.

(c) a = 4.0, b = 20.0, c = 18.0, find a , and /4.

2. Find the largest angle of a triangle having sides 6, 8,

and 12.

3. In the following problems find the length of the side not

given.

(a) b = 8, c 12, cc , 25°

(b) a = 2.5, b . 13, 74 = 140°

(c) a . 6o, c = 30, ,d . 4o°

4. Find all three angles of the triangle in each of the following:

(a) a . 15, b 16, c 17

(b) a . 24, b = 22, c . 25

(c) a = 6o, b = 30, .c = 4o

(d) a = 4.5, b 11, c 8.5

5 Two sides and the included angle of a parallelogram are 12

inches, 20 inches and 100° respectively. Find the

length of the longer diagonal.
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10-11. The Law of Sines.

The following theorem expresses the area of a triangle in

terms of its sides and angles.

Theorem 10-11a. In triangle ABC

area of triangle ABC = 22:ab sin74

1
-1:)c sin M

1= ac
2

Proof: Introduce a coordinate system so that f is in
standard position. (See Figure 10-11a).

Then by Theorem 10-5a
Figure 10-11a.

sint =
2 2 aix + y

but y is also equal to h, the altitude of the triangle, so
h = a sint. Since the base of the triangle is b, its area is
1

The other formulas follow similarly.
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Theorem 10-11b. (Law of Sines). In triangle ABC,

Bina sinza sin;e
a

Proof: According to Theorem 10-11a we have

1 1
-fat) sin r = -ffbc sin a = ;ac sin.

abc
If we divide each member of these equations by -7- we

obtain

sin e sin cC sin.a
a = --E--*

Example 10-11a. If, in triangle ABC, a = 10,/, = 42°,

51°, find b.

Solution: Since a + 1800 we have a = 87°.

By the'law of sines

sin a sin/g
a "6--'

1, a sinto 10 sin 42° 6.62 6.7
or - n nsn sin 87° '9

Example 10-11b. Find the area of triangle ABC if a = 10,

b = 7, e = 68°.

Solution: According to the formula in Theorem 10-11a, the
1

area of triangle ABC = -rb sine= 35 sin 68° .1". 35(.927) :'. 32.4

Example 10-11c. Are there any triangles ABC such that

b = 5, c = 10, and 74 = 22°?

151
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Solution: Before attempting to solve Example 10-11c let us

try to construct a triangle ABC geometrically, given b, c,

and . Lay off side AC of length b, and construct angle 74
at C. Now with A as center strike an arc of radius c. There

are R number of possibilities depending on b, c, and which

are filustrated in Figure 10-11b.

(iv) (v) (vi)

Figure 10-11b.

1 5 5

[sec. 10-11]
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In case (i) there is no triangle;

'in case (ii) there is one triangle;

in case (iii) there are two triangles;

in case (iv) there is one triangle;

in case (v) there is no triangle;

in case (vi) there is one triangle.

Thus to solve Example 10-11c, we attempt to find/9 keeping

in mind that there may be zero, one, or two solutions. If such a

triangle exists, then by the law of sines

R.414.9 sin 22o

eor sim= sin 22° .187 .

Recall that sin, is positive in the second quadrant and if

/<0 = 180° - A where 0 < Q < 90°, then sin,49 . sin G. Thus from

sin/p, Z., .187 we conclude that6' Z.' 110 or," f*,:, 169° to the

nearest degree. Are both of these values of ,d19 possible? If

= 169°, then Ye' +,49 = 1910 which is impossible. Why?

Therefore, there is one triangle with the given data. We are in

case (iv).

Example 10-11d. Are there any triangles ABC with b . 10,

c = 15, and / = 105°?

Solution: We attempt to findrcg . If there is such e ri-

angle, we have, from the law of sines,

sin.,=0 sin'177 13
But sin = sin 105° = sin(180° - 75°) . sin 750 .966. Hence,.

sin/9 Z: .(.966) .644 and this implies/9 40° or/O°

Clearly,0 can not be 140° and there is one triangle with the

given data. This is an example of case (vi).
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Example 10-11e. Are there any triangles ABC such that
b 50, c .= 10, 'and 7" 22°?

Solution: We attempt to find /53 . If there is Such a tri-
angle we have, from the law of sines,

sin.a sin 22°
50 lo '

sin/6'Z 5(.375) > 1.

But we know that the sine never exceeds one, and therefore our

assuMption that a triangle with the given data exists leads to a
contradiction. Thus there are no such triangles. This is an
illustration of case (i).

I. Use the law of sines

(a) ,9 = 68°,

Exercises 10-11

32.0, find a

to solve the following:

300,
C =

(b) m 45 /4 = 60°, b = 20.0, find c

(c) m = 26°, 7'7 = 43°, c = 21.3, find b

(d) 126°, a = 33°, b = 3.71, find a

(e) 709 = 113.2°, a = 46°, c = 17.5, find b

(f) ,49 = 68.5°, a = 103.2°, C = 51.3, find a

2. Solve completely the following triangles:

(a) M = 27°, = 42°, b = 24

(b) 71 . 29.5°, /9 = 48.5°, c = 8.4

(c) = 132°, ,49 = 24°, a = 135

(d) a = 5.8, m = 50°, = 730

(e) m = 102°, /9 = 410, c = 52.8

M = 48.5°, 71 = 67.8°, b = 28.7

(sec. 10-11]



3. In each of the following, without solving, determine the

number of solutions.

(a)cC

(b)A9

=

=

110°,

60°,

a =

b =

5,

12,

(074 = 110°, c = 36,

(d)m = 30°, a = 8,

(e)m = 45°, a = 14,

(f)m = 120°, a = 12,

b = 4

c = 10

b = 36

b = 7

b = 16

b = 8

4. In the following, determine number of solutions and solve

603

completely.

(a) ct = 69°,

(b)49 = 13.3°,

(c)m = 142°,

(d)7e = 59.6°,

= 5.8°,

a =

b =

a =

a =

5.2, b = 6.2

80, a = 193

8.4, b = 3.7

39, c = 37

c = 98.3, a = 23.2

5. Find the area of the triangle in each of the following.

(a)

(b)

(c)

(d)

b = 12, c = 14, a = 42°

a = 8.6, b = 7.9, i/ = 670

a . 14.1, c = 27.4, /9 = 112°

c = 5.5, b = 8.0, a = 103.5°

6. One diagonal of a parallelogram is 24.8 and it makes an

angle of 42.3° and 27.6° with the sides. Find the sides.

7. Two points A and B on a side of a road are 30 feet

apart. A point C across the road is located so that angle

CAB is 70° and angle ABC is 80°. How wide is the

road?

[sec. 10-11)
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8. Two observers, one at

A and the other at

B, were 1760 yards

apart when they observed

the flash of an enemy
A

gun at C. If angle A

was 380 and angle B

was 610, how far was

each observer from the

enemy gun?

1760 yards

9. From the top of a cliff, the angles of depression of two

successive mileposts on a horizontal road running due north
are 74° and 25°, respectively. Find the elevation of
the cliff above the road.

10. A tower at the top of an embankment casts a shadow 125 feet

long, straight down one side, when the angle of elevation of
the sun is 48°. If the side of the embankment is inclined

33° from the horizontal, find the height of the tower.

11. A triangular lot lias frontages 90 feet and 130 feet on

two streets which intersect at an angle of 82°. Find the
area of the lot.

12. The lengths of two sides of a triangular lot are 240 feet
and 300 feet and the angle opposite the longer side is

equal to 75°. Find the third side and the area.
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10-12. The Addition Formulas.

Angle measures and trigonometric functions have a common

feature, namely, they both are schemes for attaching numbers to

angles. One important difference between them has to do with

addition of'angles. If a and fi are any angles, the measure

of their sum cC +/B is the same as the sum of the measures of cc

and of,50 . The corresponding statement is not true for trigono-

metric functions. For instance sin(30° + 600) = 1 and

sin 30° + sin 600 . +4, which does not equal 1. In this

section we derive the correct exprension for sin(1 +/9) and

related expressions. We need a preliminary theorem.

Note: In what follows the expression (cos cc )2 and (sinc)2
, 2

are written as cos
2 m and sin M kinstead of as coscC and

sinoc2 which could mean cos(m)2 and sin(m)2.)

Theorem 10-12a. Let C be a circle of radius 1, let r

be any angle whose vertex is the center of C, and let P and Q

be the respective intersection of the initial and terminal sides

of 7,^ with C. Then

IPQI2 = 2 - 2 cOsie.

Proof: Introduce a coordinate system in which the initial

side of 7" is the positive x-axis (See Figure 10-12a).

!ZIP
Acos r,

Fin 10-12a.
Length of the chord PQ.

(1,0)

[sec. 10-12]
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Then the coordinates of P are (1,0), and those of Q are

(cose,sine). The distance formula gives

IPQI2 = (cos e - 1)2 + (sine )2

= 1 - 2 cosr' + cos27+ sin22'

or since cos2e + sin2e = 1,

IPQI2 = 2 - 2 cose.

Theorem 10-12b. For all angles m and10

cos(a -cc ) = cos" cos m + sinfl sin cC .

Proof: We first use Theorem 10-12a to evaluate IPQI2,

obtaining (see Figure 10-12b) 1PQI2 = 2 - 2 cos(/9 - M ). We

then re-evaluate IPQI2, using the distance formula. We have

_ cc

Al."1411

%NIQoW,sinA0 (cos;;;4

'Figure 10-12b. The difference ofg and m .

IPQI2 = (cos/a - cos cc )2 + (sin/ - sin cc)2

= cos29 - 2 cos M cow + coA+ sin49

- 2 sin m sin/9 + sin2M

2 2
= cos49 + sin/6, + cos

2
cC + sin

2
cC

- 2 cos m cos/9 - 2 Bina sin,p .

2
Since coset? + sin2 /6' = cos

2
cc + sin2 cc =.1, we have

IPQ12 = 2 - 2(cos m cosea + sinm sin/9).

sec.. 10-12]
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By equating this expression for 11'02 with the one given at the

beginning of this proof, we have

cos(/& -cC ) = cos/0 cos M + sin,,sin ct

Example 10-12a. Find cos 15°.

Solution: cos 1 5° = cos(45° - 300)

7 cos 45° cos 300 + sin 45° sin 300

1.2- 1

72 7
VT +

We next derive similar formulas for sin(141 - cc ) cos(m +,49),

sin(M +/a). First we need some preliminary theorems.

Theorem 10-12c. For all angles M

cos(M - = sinct

sin(m - = - costx .

Proof: By Theorem 10-12b

cos(M - = dos m cos + sincc sin i.

Since cos 7 = 0 and sin . 1, it follows that

cos(m - = sincc.

Since this relation holds for any angle m, we can use it for

tX- -2- itself. It then reads

cos ((m - - = sin(

The left hand side of this equation is cos(m - 70, which equals

cos m cos 7T + sin m sin 7r. Since cos w = -1 and sin 7T = 0, we

conclude that

sin(M - = -cos cc .

.162
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Theorem 10-12d. For all angles cc andg
sin(fi -cC ) = sin/g cos cc - cos,4 sin cc .

Proof: By Theorem 10-12c, we have

sin(fi - cc ) = cos (( cc ) - )2
= cos (( - - CC ).

Using Theorom 10-12b, we can write

cos (ga -cc ) = cos((s- 5) cos CC + sincC .

We substitute sin/g for cos(,g- 12-) and -cos/a for sin(ff-
in this last relation to obtain

sinca - = cos a - cos/g sin cc .

Example 10-12b. Find sin 15°.

Solution: sin 15° = sin(45° - 30°)
= sin 45° cos 300 - cos 45° sin 300

1-2 lj 1

- 12-
L.

Theorem 10-12e. For all angles cC

cos(- cC) = cos cc

sin(- a) = -sin cc .

Proof: cos(-cc ) = cos(0 -a)
= cos Oo cos cC + sin 0 0 sincC .

Since cos 00 = 1, sin 0 = 0, we conclude that

cos(-cC) = cos cC .

Since sin(-a ) = sin(0 -cC )
= (sin 0)(cos - (cos 0)(sina )

we have sin(-cC) = 0.cos cc - 1sin
= -sin a .

[sec. 10-12]
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Theo'rem 10-121. For all angles M and/g

cos(+ cC) = cos, cos m - sinsin M

sin(,g+ cc) = sin10 cos m + cos,49 sin M .

Proof: cos cx ) = cos(,i_ (-a ))
= cos, cos ( - ) + sin/3 sin( - cC )

= cos14 cos ct - sin/0 sin M .

sin(g-i- ) = sin(/(g- (-7:C

= sin/d cos(-cC) - cos/V sin(- M)

= s1n49 cos M + cos, sin M .

Example 10-12c. Find cos 75° and sin 75°.

Solution: cos 750 = cos (45° + 300)

= cos 450 cos 300 - sin 45° sin 300

4§ 1

2-

-
4

sin 750 = sin(45° + 300)

= sin 4 5° cos 300 + sin 300 cos 45°

12' N/5 1 N/2-

+
4

Notice that sin 750 = cos 15° and cos 750 = sin 15°. This

illustrates Theorem 10-12c.

Theorem 12L-12E. .For all angles M

sin 2 M = 2 sin M coscC

-cos 2 M = cos
2

cC - sin
2

cC .

161
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Proof: sin 2 cc = sin(CC 4-CC)

= sin cc cos cc + sin cc cos cC

= 2 sin cC cos cC .

cos 2 cC = cos(cC +cC)

= cos cC cos cC - sin cc sinCC

= cos 2
cc - sin2 a .

Summary of Formulas

cos(cC +) = cos cC cosla - sin cC sin/e
sin(cc +la) = sin cc cos,a + cos cc sin/0
cos(cC -/s) = cos cC cos/0 + sin CC sintg

sin( cC = sin cc cos/0 - cos cc sin ee
7rcos( cc - % = sincc

sin( cc - = -cos cc

cos (-cC) = cos cc

sin(i-c4 = -sincc

sin 2 cc = 2 sincc coscc

cos 2 cc = cos 2
cc - sin 2

oc

Exercises 10-12

1. Let
4-3

cC be an angle in the third quadrant whose cosine is
and /' be an angle in second quadrant whose tangent is

Find

(a) sin(cc ) (d) cos(CC -,d )

(b) cos(cC+) (e) tan(cc +xi)

(c) sin(cc -/a) (r) tan(m

[sec. 10-12]
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2. Use the addition formulas to compute the exact value of the

following:

(a) sin 75° (d) sin 15°

(b) cos 75° (e) cos 105°

(c) tan 750 (f) sin 195°

3. -Use the addition formulas to find the exact value of the

following:

(a) cos(r - 1) (c) cos(r + 1)

(b) sin(r - (d) sin(4

4. Show that cos(m = sin m for

(a)a = 45°

(b)m = 2100

(c)m . 1800

5. Show that sin( cc - = -cos cc for

(a)M = 60°

(b)a = 1500

(c)cc = 300°

6. Prove cos 2 m 2 cos
2m - 1, and deduce from this equation

th
+ cos G

e half angle formula cos r = -+p .

7. Prove cos 2 cC .! 1 - 2 sin
2
cC, and deduce from this equation

- cos
the half angle formula sin r -
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8. Compute the exact value of sin 2M , cos 2M and tan 2M

for the following:

(a) cos a = 4, m in quadrant I

4
(b) tan a 7., a in quadrant III

(c) sin a . 4, cc. in quadrant II

(d) cos = 4, m in quadrant Iv

9.
a aCompute the exact value of sin cos T, and tan 7 for

the following:

(a) cos a . cc in quadrant Iv

(b) sin a 4, m in quadrant III

(c) cos a = -41, a in quadrant II

(d) sin a = 4 a 'ni quadrant I

10. Use the formulas from Problems6 and 7 to compute the exact

value of

(a) cos 15°

(b) cos 22.5°

(c) sin 11.25°

(d) sin 7.50

10-13. Identities and Equations.

Equations such as

sin 2'm = 2 sinm cos M
c

are known as identities. They yield true statements no matter

what angle or real number is substituted for M. In a slightly

generalized sense, the following equation is an identity.

167
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sin A
10-13a tan A =

cos

since, by Theorem 10-5a,

/ (2k + 1)5

sin A r tan A.
cos g x x

This identity has one peculiarity which should be observed care-

fully; tan A is not defined for A = (2k + 1)ir and sc41174 is

not defined for A = (2k + 1)7i since -tos(2k + = 0. Thus,

the two sides of equation 10-13a are equal for every value of A

sin A
for which the two sides are defined, and tan A - ----x is also

cos w

called an identity.

The equation
sin 2 cC = 2 sin m

yields a true statement if M is replaced by 2nr, n an integer,

but it yields a false statement for every other value of M . An

equation of this type is called a conditional equation. We have

mathematical responsibilities toward each of these types of

equations. We shall be asked to prove identities, that is, prove

that the solution set consists of all values of the variable.

More precisely, to prove an identity means to prove that the

solution set consists of all values of the variable for which the

two sides of the equation are defined. To solve a conditional

equation means to find the solution set.

There are no standardized methods for proving identities or

solving equations. To prove an identity or to solve an equation

often requires ingenuity and perseverance, and many methods must

be devised to handle all the problems that arise. The procedures

are best explained by a variety of examples.

1 8
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Example 10-13a. Prove the identity

2 tan atan 2 a -
1 - tan

2a

Solution: Observe that neither side of this equation is

defined for

. , k an integer,

for, on the left, 2 a is an angle co-terminal with ir and the

tangent is undefined; on the right, tan2 cz = 1 and the denomin-
ator vanishes. We are thus asked to prove

2 tan atan 2 a -
1 - tan2a

By the proof at the beginning of this Section,

sin 2
tan 2a = -66-5--Fric ,

2 sin a cos a
(by the formulas from-

cos 2a - sin2a Section 10-12)

sin a
cos,$F

(divide the numerator-
sina and denominator by

1 -C:7;7
cos2 m )

2 tan a
, / + kir.

1 - tan-a

Example 10-3b. Prove the identity

tan(A + r) = tan , Q / (2k + 1)7i

169
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Solution: By Equation 10-13a,

tan(G + r) - sin g r
cos

-sin
776F-15

sin
756U

= tan G.

/ (2k + 1)i

(by the formulas in
Section 10-12)

Example I0-13c. Prove the following identity

sin M = tan r
177-7675157(7

m / (2k + 1)r.

615

Solution: The key to the solution is the observation that

cC'.= 2(s). Thus

sin 20§)
sin cC (X/ (2k + 1)r

1 + cos cc 1 + cos 2(g)

a a2 sin 7 cos r
1 + cos - sin2

2 sin cos

2 cos w

sin 7
cos

a= tan

(by the identities in
Section 10-12)

Example 10-13d. Prove the following identity:

sin M + sinia = 2 sin cos

170
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Solution: The simplest proof of this identity employs a
device. Observe that

cc -1-(8 cc
2

cc g a - g/9

Then by the addition formulas in Section 10-12

sin m = s in [(54-1)_ +

sin cC + s inx9, = sin (-S-W--) cos + cos(E-A sin (DLO-)

+ siqcC - cos(54)sin(gLiit)

= 2 s1nET-V9cos(g4f-) .

Eample, 10-13e. Find all solutions of the following equation:'

sin x = 2 cos x.

Solution: Observe first that x = (2k + 1)ir is not a

solution of the given equation. Then cos x / 0 for a value of
x which is a solution of the equation, and the given equation is
equivalent to the equation

sin x
- 2 , cos x / 0 ,

or

COS X

tan x = 2.

Interpolation in Table 10-8a, shows that x is 1.107 radians
approximately. From Example 10-13b above, it follows that

r + 1.107 radians, or 4.249 radians, is also a solution. Finally,

since the trigonometric functions are periodic with period 2r,

all solutions of the given equation are

x 1.107 + 21cr radians

x 4.249 + 2kr radians

where k is an integer.

[sec. 10-13]
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Example 10-13f. Find all solutions of the following equation:

2 sin
2 0 - 3 sin A 4- 1 = 0.

Solution: It should be observed first that the given equation

is a quadratic equation in sin A. It would be possible to solve

for sin A by using the formula for the roots of a quadratic

equation, but it is simpler in the present case to solve by

factoring. The given equation is equivalent to

(2 sin 0 - 1)(sin G - 1) = 0,

and all solutions can be found by solving the two simpler equations'

2 sin A - 1 = 0, sin A - 1 = 0.

The solutions of the given equation are thus,

= 2kr

5rg -6- 2kr

g 2kr

where k is an integer.

Example 10-13g. Solve the equation

tan x = 2x.

Solution: By scanning the entries in Table 10-8a, we see

that for small values of x,

tan x < 2x,

whereas for large values of x,

tan x 2x.

The change in the direction of the inequality occurs between

x = 1.152 and x = 1.169, that is,

2.246 = tan 1.152 < 2(1.152) = 2.304,

2.356 = tan 1.169 > 2(1.169) = 2.338.

[sec. 10-13]
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Since 2x and tan x are continuous, it follows that there is a

solution of the equation between x = 1.152 and x 1.169
ratians. Methods are given in more advanced courses for approxi-

mating this solution to as many decimal places as may be desired.

There are graphical methods which are useful in finding the

approximate values.of the solutions of trigonometric equations.

The graphical solution in the present case shows that the given

equation has an infinite number of solutions. Figure 10-13a shows
the graphs of y = 2x and y = tan x. If (x0,y0) is a point of

intersection of the graphs of these two equations, then

yo = 2x
0

yo = tan xo,

and 2x0 = tan x . Thus xo is a solution of the given equation.

' 11111111111/11111111111111111111111111/1111=11111111111
11111111111/21111111MMIIIIIMIIIIIIIIIMIN

NINNINNIENKIAMININNINNINNINVANNIMMIEN
ININNININNIZMINIMMINININNINNNENMEMN

IIINENNINNUNINNEMINENVANNIMINMINN
INMENNINNEMINENNNIMINNEWANNINNEMMEN
NIMNINENUNININNNINNINININNNINNIMINEN
FOINNINWANKINIINIENINENNENNIMINIS0
NIMINNEVINIMMININEINNENNINEINNININEN
NNIMMINNININNNINNNINANEVINNMIN
INONMPSNNNNNNNINNNNNNNNNMMNNMLI
NNIEWAINMINNENNINIMININNENNINIMNIIIN
ININFANNENNINENNININNININNE 111111
NEWEININININNIINNNEENENENTININNIN
INININNNONSMINNINNINININ
ONNNINNIMMEMINNIMINNIONNINMI
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Figure 10-13a. Graphical solution of tan x = 2x.
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It is clear from the figure that the line y = 2x intersects the

graph of y = tan x in infinitely many points. For large values

of x the intersections are almost on the lines x = (2k +

and x = (2k + 1)ir is approximately a solution if k is an

integer whose absolute value is large.

Exercises 10-13a

Prove the following identities:

1. tan cos 0 . sin 0

2. (1 - cos 0)(1 + cos 0) = sin2 0

cos 0 1 - sin
3. 1 + sin 0 cos 0

4. tan =
sin 2

1 + cos 2 0

2 1

5. ;;;7; 1 76FM

6. 2 csc 2 = sec 0 csc 0

7. tan sin 2 0 = 2 sin
2

8. 1 - 2 sin2 0 + sin
4 = cos4 0

2 cos
2 - sin

2 + 1
9. - 3 cos 0

cos 0

1
10. sin tan + cos 0 = ----m

cos to

2
11. 1 T ' -2 ^ T ' =

cos 0 cos

12. sin
4

- sin
2 cos

2 - 2 cos
4

= sin
2 - 2 cos

2
0

cos
4

- sin
4

13. cos
4

1 - tan
k

0

14. sec
2

- csc
2 = (tan 0 + cot 0)(tan 0 - cot 0)

15. tan x - tan y = sec x sec y sin(x - y)

[sec. 10-13]
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16.

17.

18.

19.

20.

21.

22.

sin 4 Q = 4 sin G cos
sin(m +/a) sin(cC -7g) =

cos(cc +Ai) cos (cc ) =

sin(cc +,e)+sin(cC =

sin(cc +47) - sin(cC

cos(cc +,e) + cos(cc -id?)

cos(cc +fig ) - cos(cc

sin23. - tan1 + cos

cos 2

sin2
cC - sin2ta

cos 26C - sin20

2 sin cc cos ,e9

= 2 cos cc sinee

= 2 cos cC cos,t9

= -2 sin cc sin,d9

24. 3 sin - sin,3 = 4 sin3 9

25. Prove that none of the following. Is an identity by counter
example. See Section 10-7, Problem 6.

(a) cos(cC = cos cc - cos,6'

(b) cos(cc +,$) = cos cc + cosfi
(c) sin(cC -0) sincc - sin,&
(d) sin(cc +le) = sincc + sin7
(e) cos 2cc = 2 coscC

(f) sin 2cc = 2 sincc
sin(M 4-eg)

v26. - tan M + tan/9cos m cost

27. sin 2 1 - cos 2
1 + cos 2 Q sin 2
csc G - 1 cot28. cot 0 csc Q + 1

29. If A + B + C = 180°, prove

(a) sin A = sin(B + C)
(b) cos A = -cos(B + C)

[sec. 10-13]
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Exercises 10-13b

Solve the following ,equations for 0 5- 0 1 2r

1. 2 sin A - 1 = 0

--2.-- 4- Cos
2 A - 3 = 0

3. 3 tan
2 A - 1 = 0

4. sin2 - cos2 o 4. . 0

5. 2 cos2 0 - licos = 0

6. sec
2 A - 4 sec + 4 = 0

7. 3 sec 0 + 2 = cos A

8. 4 sin3 0 - sin 0 = o

9. 2 sin
2 A - 5 sin A + 2 = 0

10. 2 sin A cos A + sin A = 0

11. 15-csc2 0 + 2 csc = 0

12. 2 sin
2 A + 3 cos 0 - 3 = 0

13. cos 2 A = 0

14. 4 tan2 - 3 sec2 0 = 0

15. cos 2 A - sin A = 0

16. 2 cos
2 A + 2 cos 2 A = 1

17. cos 2 + 2 cos2 = 1

18. sec
2 - 2 tan A = 0

lg. sin 2 A - cos
2 0 + 3 sin

2 A = 0

20. cos 2 A - cos A = 0

21. cos 2 0 cos A + sin 2 A sin . 1

22. cos
2 A - sin

2 A = sin A

23. 2 sin
2 0 - 3 cos A - 3 = 0

24. cos A =
1 + cos

2 A

2

(sec. 10-131
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25. cot + 2 sin g = use g

26. cos + sin g = 0

27. 3 sin + 4 cos g 0

28. Prove that if k is any real number then the equation

sin x = k cos x has a solution.

29. tan =

30. r sin = 24)

10-14, Miscellaneous Exercises.

radians:1. Convert each of the following to

(a) 0° (h) -100°

(b) 900 (i) -1000°

12o(c) 60° (j)

90
(d) 1000 (k)

(e) 390° ce)
180°

ro
(f)1000° (m) TEM

(g) 10

2. Convert each of the following to degrees:

(a) 0 radians

(b) r radians

(c) radians

(d) i radians

(e) 10r radians

(f) 1 radian

(g) -1 radian

(h) 2 radians

(i) -10 radians

(j) radians

(k) r° radians

iiimr radians

(m) 90 radians

7 7

[sec. 10-14)
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3. Angles are sometimes measured in revolutions, where 1

revolution is 271- radians, and also in mils where 3200

mils is 71- radians, For each of these units, find the

radius of a circle for which a unit angle corresponds to a

unit distance on the circumference?

4. Using the definitions in Problem 3, convert:

(a) 10,000 mils to revoluions

(b) 108 degrees to mils

(c) 10,000 mils to degrees

(d) 108 degrees to revolutions

(e) 10,000 degrees to mils

(0 .8 revolutions to degrees

(g) 80 degrees to revolutions

(h) .8 radians to degrees

(i) 80 mils to radians

(j) 800 mils.to revolutions

5. Find sin A, cos A and tan A if the terminal side of A,

in its standard poLition, goes through the given point.

(a) (-3,4) (d) (-3,-2)

(b) (-2,0) (e)

(c) (2,5)

6. Sketch in standard position all the angles between 0° and

360° which satisfy the following conditions, and give

values of the other functions of these angles.

(a) sin G =
5

3
(b) cos A = -

7

(c) tan A = - 732;

[sec. 10-14]
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7. Express the following as functions of positive acute angles.

(a) cos 1700

(b) sin 1600

(c) cos(-130°)

(d) sin 6400

(e) tan(-45°)

(0 cos 305°

(g) cos(-100°)

(h) sin 291 r

(1) cos -ir

(j) tan ;

8. If sin a = and sin,<9 = :lit, (a andx9each are acute

angles) find

(a) sin(a
) (d) cos(a )

(b) sin( a ) (e) sin 2 (/

(c) cos( c (f) cos 2,49

9. Find the value of the following:

(a) sin 900 + cos 120° + tan 225° + cos 180°

(b) sin 30 cos 150 - sin 60 cos 45

(c) sin 330° tan 135° - sin 225° cos 300° tan 180°

10. Solve the following triangles for the indicated parts. Given:

(a) a . 3, b 2, 11= 60°, find c.

(b) a . 5, b = 6, c = 7, find /47 .

(c) c . 16, /a =
84o, .r= 54o,

find a.

(d) c 5yq a = 45°, a = 6, find b.

(e) a . 20, b = 21, 11 43°35', find c.

b = 5,
75(), 300,

find c and a.

(g) a = 60° a = 8,/T, c 15, find ig .

(h) b = 15, c . 2, / find Area.

(i) a . 12, b = 35, c = 37, find('

(j) a = 21, b = 17, c = 10, find Area.

(sec. 10-14]
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11. Prove that tan(-0) = - tan

PROVE

12. cos(7i - g) . sin

13. sin(2r - 0) .-sin g

14. cos 9 cos 2 g - sin Q sin 2 Q = cos 3

15. cos 2 Q CO3 Q + sin 2 g sin g = cos

16.
2

2 cos 7 - cos = 1

17. 2 sin + sin 2
2 sin

3

1 - cos

k2
18. (cos Q - sin 0) = 1 - iin 2

19. 4 sin
2

cos
2 = 1 - cos

2
2

cos 2 2 - 1
20. -cos

2
-

L. sins

cos 2x
21. cos x + sin x - cos x - sin x

Find all primary angles which are solutions of the following

equations.

22. sin x - tan x 0

23. 1 - sin
2 x = cos x

24. cos x -
1 - cos x

2

25. sin 2 - sin 9 = 0

26. cos 2 = 2 - 2 cos
2 7

27. cos 3 - cos . 0

28. 2 cos
2

2 - 2 sinS 2 = 1

29. 2 cos
2 - sin - 1 = 0

30.
1 - cos

sin
= sin

31. cot
2 + csc = 1

[sec. 10-14]
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32. Let a and b be any non-zero real numbers and let 9 be

any angle, prove that there is an angle a such that

a cos Q + b sin =,v/a2 + b2 cos(O -cC).

33. In a triangle, one angle is 360 and another is radians.

Find the third angle in radians.

34. Through how many radians does the minute hand of a clock

revolve in 4o minutes.

35. Find the three angles of a triangle ABC, given a 200,

b 300, and c = 400.

36. Find the remaining parts of the triangle ABC, given

b = 128, c = 145 and/Y = 210.

37. A man standing 152 feet from the foot of a Tlagpole, which is

on his eye level, observes that the angle of elevation of the

top of the flagpole is 48°. Find the height of the pole.

38. Two points A, and B are on the bank of a river are 4o

feet apart. A point.. C across the river is located so

that angle CAB is 70° and angle ACB is 70°. How wide

is the river?

39. The adjacent sides of a parallelogram are 20 and 15 inches,

respectively, while the shorter diagonal is 17 inches. What

is the length of the longer diagonal.

4o. A flagstaff known to be 20 feet high stands on top of a

building. An observer across the street observes that the

angle of elevation of the bottom of the flagstaff is 69°

and that the angle of elevation of the top of the flag is

76°. Find the height of the building.

41. AB- is a tower which stands on a vertical cliff BC. At a

point P 310 feet from the foot of the cliff, the angle of

elevation of B is 210 and the angle of elevation of A

is 35°. Find the height of the tower.

131
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42. Use the figure below to find

the following:

a. R,

b. r,

c. BAO.

140"

0"

1 3

150"

[sec. 10-14]
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Chapter 11

THE SYSTEM OF VECTORS

11-1. Directed Line ,Segments.

It is assumed in this chapter that you are familiar with

plane geometry. We review some of the symbols of geometry. AB

means the line which contains the distinct points A and B .
-->
AB means the ray whose vertex is A and which also

contains the point B . IABI means the distance froli: !o B

(and from B to A). It is a..positive real number if A and B

are distinct. It is zero if A and B are the same.

We need one further idea which is not ordinarily covered in

geometry--that of parallel rays. Rays are said to be parallel if

they lie on lines which are either parallel or coincident, and if

they are similarly sensed. Figure 11-la shows typical instances

of rays which are parallel and of rays which are not parallel,

and is supposed to take the place of a formal definition.

A B A B C D

B

rays AB and CD are II

D A Ba- _

A B

4 15

rays AB and CD are not II

Fig. 11-la
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Definition 11-1a: A line segment is said to be a directed

line segment if one of its endpoints is designated as its initial

point and the other endpoint is designated as its terminal point.

We use the symbol AB to denote the directed line segment whose

initial point is A and whose terminal point is B We say that

directed line segments AB and CD are equivalent if it is true

that their lengths are the same and also that the rays g and

CD are parallel. We write AB A CD to denote the fact that AB

and CD are equivalent.

Note: We consider that a single point can be both initial

and terminal point of ti.e same directed line segment and we

consider that all such directed line segments are equivalent to

one another.

A

AB A CD

A

Fig. 11-lb

--
Figure 11-lb shows some pairs of equivalent directed line segments.

It uses the convention that the endpoint of a segment which has an

arrow is the terminal point of the segment. Notice that if A, B,

C, D are not collinear, then AB A CD if and only if ABDC is a

parallelogram. We need the fact that AB is any directed line

segment and if C is any point, then there is one and only one

point D such that AB A CD We do not prove this fact, but

assume that it is known from the study of geometry.

1.3 i
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Definition 11-lb: Let AB and CD be any two directed line

segments. Then by their sum AB + CD we mean the directed line

segment AX, where X is the unique point such that BX A CD .

We call the operation which assigns their sum to each pair of

directed line segments the addition operation for directed line

segments. Plgure 11-1c shows some sums of directed line segmens.

Ac . AB + BC

CX = CD + AB

AX = AB + CD

47B

Pig. 11-1c

AB . AB + CD

D/C

Directed line segments can be added and multiplied by real

numbers in a useful way. We give the formal definition of these

operations here. Their properties are studied and applied through-

out the rest of the chapter.

Definition: Let AB be any directed line segment and let r

be any real number. Then the product rAB is the directed line
21

segment AX , where X is determined as follows:

135
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(1)

(2)

(3)

(4)

If r > 0 , then X is on the ray

If r < 0 , then X is on the ray

IAXI - rIABI.

If r 0 , then X = A .

If B A , then X . A .

AB and IAX1 = rIABI.

opposite to AB and.

Figure 11-1d shows some typical products.

A

0 AB AA

1 AB = AB

2 AB .-AC

Fig. 11-1d

It is useful to know that if equivalent directed line seg-

ments are added to equivalent directed line segments the sums are

equivalent, and that if equivalent directed line segments are

multiplied by the same number the products are equivalent. We

now state ther;' facts formally as theorems and illustrate them.

Theorem 11-1a: If AB = CD and if PQ = RS then

AB + PQ . CD + RS .

[sec. 11-1]
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AX A CY.

Fig. 11-le

633

CY . CD + RS

Figure 11-le shows a typical instance of this theorem. It is

equivalent to the fact that if ABDC is a parallelogram and if

XYDB is a parallelogram, then AXYC is a parallelogram. This

is a special case of a famous theorem of geometry known as

Desarguest Theorem.

Theorem 11-lb: If AB A CD and if r is any real number,

A
--

then rAB A rCD .

X

AX = rAB; CY . rCD; AX CY .

Fig. 11-1f

[sec. 11-1]
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Figure ll-lf illustrates a case in which A, B, C, D are not

collinear. It also illustrates the geometric version of the

statement, that if ABDC is a parallelogram and if AX A CY
then AXYC is a parallelogram.

Exercises 11-1

1. A and B are distinct points. List all the directed line

segments they determtne.

2. A, B and C are distinct points. List all the directed lin(

segments they determine.

3. A, B, C nd D are vertices of a parallelogram. List all

the directed line segments they determine, and indicate which

pairs are equivalent. A

4 In triangle ABC

(a) AB + BC . ?

(b) BA + ? . BC .

(c) ? + BA . BC .

(d) ? + AB . AA .

(e) (AB + BC) + CA = ?

(f) BA + (AC + CB) . ?

(g) ? + AC . CB .

5. A, B and X are collinear points. Find r such tht4%

and s such that

AX = rAB

BX sBA

18'8
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if

(a) X is the midpoint of segment AB .

(b) B is the midpoint of segment AX .

(c) A is the midpoint of segment BX .

(d) X is two-thirds of the way from A to B .

(e) B is two-thirds of the way from A to X .

(f) A is two-thirds of the way from B to X .

6. In triangle ABC , X is the midpoint of ,T and Y is the

midpoint of segment BX .

(a) EZ = BA + ?AC .

(b) BX = ?BY .

(c) BC + ? .

(d) BX = BC + ? .

(e) BY = ?BX .

(0 By = ?(BA + AX) .

(g) BC = ?BY + XC .

11-2. Applications to Geometry.

It is possible to use directed line segments to prove

theorems of geometry. These proofs are based on algebraic

properties of directed line segments. They are quite different

from proofs usually given in geometry which appeal to such'matters

as congruent triangles and the like.

We state and illustrate the necessary al lic properties of

directed line segments here. We prove these statements ia

Section 11-3.

I. Commutative Law:

AB + CD . CD + AB

[sec. 11-2]
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Figure 11-2a shows an instance of the commutative law for

addition in which the directed line segments AB and CD have

a common initial point.

A

AB + CD = CD + AB . AX

Fig. 11-2a

II. Associative Law:

AB + (CD + EF) = (AB +. CD) + EF .

Figure 11-2b shows sums AB + (CD + EF) in which B and C

are the same and D and E are the same.

A

D=E

AB + (CD + EF) = (AB.-+ CD) + EF = AF .

Plg. 11-2b

III. Existence of Zero Elements.

Every directed line segment of the type AA is a zero

element because 1NQ + AA = PQ .

[sec. 11-2]
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IV. Existence of Additive Inverses.

BA is the additive inverse of AB , because AB

We use a minus sign to denote the additive inverse of a

directed line segment AB , and write - AB for BA . We write

- AB for + BA .

This operation of subtraction is illustrated in Figure 11-2c.

'AB + BC

AC - AB = T3-6

AC + BA = BC

Fig. 11-2c

V. The Associative Law.

r(sAB) = (rs)AB .

- ;(4 a) = - -Z)

(_ . )4)AB = - 2AB . AD

Fig. 11-2d

Figure 11-2d shows an instance of the associative law in
1which r - s 4 .

[sec. 11-2]
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VI. The Distributive Laws:

,r(AB + CD) . rAB + rCD,

(r + s)AB = rAB +.sAB .

,17

AQ 4AB, QP = 4CD, AP = 4AD

AP = AQ + QP

4AD = 4AB + 4CD

4(AB + CD) = 4AB + 4CD

AD . AC - DC

2AB . AC + CD

(4 + (-2))AB = 4AB + (-2)AB

Fig. 11-2e

Figure 11-2e illustrates the distributive laws for

r = 4 s -2

The combined effect of all these laws can be summed up

briefly as follows:

Directed line segments obey the

familiar rules of algebra with

respect to addition, subtraction,

and multiplication by real numbers.

We now show how this algebra of directed line segments can be

applied to proving theorems of geometry.

192
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Example 11-2a: Show that the mldpoints of the sides of any

quadrilateral are'vertices of a parallelogram.

Proof: Let ABCD be the quadrilateral (see Figure 11-2f)

and let X, Y, Z, T

It is sufficient to
4-4"

that XY II TZ and

We have

and

Fig: 11-2f

be the midpoints of its sides as indicated.

show that XY A TZ since this

that IXY1 ITZ1

1'
XY A 747AB + -2pc

TZ.= 52AD + .72DC .

Since DC A DA + AB + BC , we also have

TZ A i;AD + + AB + BC)

= 7AD - 7;AD + 7AB + BC

.72AB + 7pc .

This shows that XY A TZ .

implies both

Example 11-2b: Prove that the diagonals of a parallelogram

bisect each other.

193
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Solution: Let ABCD be the parallelOgram (see Figure 11-2g).

Fig. 11-2g

Then the midpoint of AC is the endpoint of ;(AB + BC) . The,

midpoint of DB is the endpoint of AB + ;(BA + AD) which equals

AB - -72AB + TAD or AB + TAD We show that this is the same as
2

TAB + Tpc . Since ABCD is a parallelogram AD A BC , so the

last sum is certainly equivalent to ;AB +4BC We conclude that

these directed line segments are the same by noticing that in

addition to being equivalent they also have the same initial point.

Example 11-2c: Prove that the medians of a triangle meet in

a point which trisects each of them.

Solution: Let ABC be the triangle. (See Figure 11-2h.)

zx
Fig. 11-2h

Let X, Y, Z be the midpoints of its sides. Then, the point two-

thirds the way from A to X is the endpoint of ukAB +

1 0
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The point two-thirds the way from B to Y is the endpoint of
2

The point two-thirds the way from C to Z is the endpoint of

AC + i(CA + :pB) .

We show that these three directed line segments are one and the

same. We use the fact that BC = BA + AC .

Then the first is equal to

4(A-t3+1;BA + ;AC)

which'is equal to ;(-Ar - ;AC)

1
or

1--"The second is equal to AB - /AB + 1AC which also equals

1 --'

2 1
The third is equal to AC - /AC + /AB which also equals

Example 112d: Prove that the line which joins one vertex of

a parallelogram to the midpoint of an opposite side is trisected

by a diagonal. Prove also that it trisects this diagonal.

Solution: Let ABCD be the parallelogram (see Figure 11-21).

Let A be the given vertex and let X be the midpoint of CD .

Fig. 11-21
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We are to show that the point two-thirds of the way from A to

is the same as the point two-thirds of the way from D to B .

The first point is the endpoint of

-stAB + TBC)

or 1AB + 1pc .

The second point is the endpoint of

3

This latter equals

AD 4'AD + ;AB-

1 2
or

Since AD is equivalent to BC we see that these two

directed line segments are equivalent; that they are in fact the

same follows from the additional fact that they have the same

initial point. ,

Exercises 11-2

1. If ABCD is a parallelogram, express DB .

(a) in terms of DC and DA .

(b) in terms of DC and CB .

(c) in terms of AB and BC .

(d) in terms of AB and AD_.

(e) in terms of BA and BC .

2. If A and B are distinct points, identify the set of all

terminal points of the directed line segments of the form

t AB for which

(a) t 0 .

(b) 0 < t < 1 .

(c) t 1 .

(d) - 1 <

196
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3. If A, B, C are non-collinear points, find the set of all

terminal points of directed line segments of the form

r AB + s AC

for which

(a) ,r 0 , s arbitrary.

(b) s = 0 , r arbitrarY.

(c) 0 < r < 1 , s arbitrary.

(d) 0 < s < 1 , r arbitrary.

(e) 0<r<1,0<s<1.
(f) r = 1 , s arbitrary.

(g) s = 1 , r arbitrary.

*(h) r + s = 1 .

*(1) r s = 1 .

*(j) -S+i= I .

*(k) 6r +,78 . 8 .

*(1) ar + bs + c = 0, where a, b, c are real numbers and

where not both a and b are zero.

4. Show by an example that subtraction of directed line segments

(a) is not commutative,

(b) is not associative.

-5. In the following figure

ABCD, EOGB, and HDFO are each parallelograms. Prove that

their respective diagonals AC, EG, HF, extended if necessary,

meet in a single point X .

[sec. 11-2]
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6. ABCD is a parallelogram and P, Q, R, S are the midpoints of

the sides.

For each of the following directed line segments, find an

equivalent directed line segment of the form r OQ s OP .

(a) OB (e) DB

(b) OC (f) AC

(c) OD (g) CA

(d) OA (h) BD

7. Show that the four diagonals of a parallelepiped bisect me

another.

. 11-3. Vectors- and Scalars; Components.

Directed line segments acquire new properties when algebraic

operations are defined for them, so it is proper to give them a

new name. Real numbers also acquire new properties when they

multiply directed line segments, so it is proper to rename them

also. From now on we shall call a directed line segment a vector.

We shall call a real number a scalar if and when it multiplies a

vector. This is a refinement which is not absolutely necessary

for logical thinking, but it helps.

-ide are going to discuss equivalence of vectors, addition of

vectors and mu2tiplication of vectors by scalars in terms of

coordinates. The following theorem is the basic tool in this

discussion.

198
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Theorem 11-3a: Let A, B, C, D have respective coordinates

(a1,a2), (b1,b2), (c13c2), (d1,d2). Then

if and only if

then

and

AB -1 CD

- cl and b2 - a2 = d2 - c2bl - al . dl

Proof: Figure 11-3a illustrates Theorem 11-3a.

0 2

s A= at

: r.

B( ,4

D(4,4

2
A

(3

0

y

4 - 2 / 4 - 1

2 - 1 - 3
4 - 2 3 - 1 Fig. 11-3a

We give only a few indications of its proof.

If b
1

- a 1 d
1

- c
1

and if b2 a
2 ""--

d
2

c
2

%

(b1 - 8.1)2 + (b2 - a2)2 (d1 - cl)
2
+ (d2 - c2)2

provided that

b2 - a
2

b2 - a2
1 1

b
1

- a
1

4 0 and b 2 - a 2 0 .

[sec. 11-3]
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We conclude that IABI = ICD1 and that AB II CD . This

makes plausible the fact that if the given equationa.hold then
a..

AB ;. CD . It doesn't completely prove this (we need AB II CD)

and it doesn't contribute at all to the proof of the converse.

Corollary: If OP is the vector equivalent to AB , where

0 is the origin, then P has coordinates (bi - a b - a 1
1 ' 2 2, '

Definition 11-3a: If A is the point (a1,a2) and B is

the point (b1,b2), we call the number b1 - al the .s..)...cosallent

of AB , the number b2 - a2 the 7-component of AB .

In most discussions ofyecters the initial and terminal points

of the vectors are not as important as their x and y-components.

We shall therefore often specify a vector by giving its x and y

component. We use square brackets [,] to do this; [p,q] means

any vector whose x-component is p and whose y-component is q .

We shall sometimes denote vectors by single letters, with an arrow

above, like A , when the specific endpoints are not important.

We also write A = B to assert that two vectors are equivalent.

The equal sign should properly connect not the vectors themselves

but their components. Thus Theorem 11-3a can be restated as

follows:

If X is [x1,x2] and Y is [y1,y2] , then

X = Y

if and only if

xi = yi and x2 . y2 .

.We use the symbol IXI to denote the length of X . We have

2
I [x1,x2] I =4v412 + x2 .

200
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We turn now to the addition and multiplication operations for

vectors, show how they can be effected in terms of components and

prove the basic algebraic laws stated for them in Section 11-2.

Theorem 11-3b: If X is [x1,x2] and if Y is [yi,y2]

then X + Y is [(x1 + y
1

), (K2
4- Y2)].

Proof: By definition of addition for vectors (see

Figure 11-3h)
z(xl+yox2+ Ad

Y(Y1,Y2)

Fig. 11-3b'

OZ is OX + OY if and only if XZ A OY . According to

Theorem 11-3a, this will be so if and only lf the point Z Is

(x1 + yl , x2 + y2) It follows that the components of X + Y

are xl + yl and x2 + y2 .

coroliany: Addition of vectors is commutative.

Corollary: Addition of vectors is associative.

(X y) + z + (y z) .

2 0
[sec. 11-3]
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Corollary: There is a zero vector [0,0] .

Corollary: Every vector X has an additive inverse - X .

If X is (x1,x2] , then - X i [-x1,-x2] .

Then

Theorem 11-3c: If X is (x1,x2] , then rX is (rx1,rx2].

Proof: Let Y be the point (rx1,rx2) (see Figure 11-3c),

Y(ryq

)°10Y

Fig. 11-3c

loyl = 1/((rx1)2 ( rx2)
2 . Irls412 x22

Irl.10X1 .

Also 0, X, Y are collinear, since they are on the line whose

equation is x2x - xly . 0 . We must show that the ray 755t is

parallel to the ray OY to complete our proof. We omit this

part of the proof.

Corollary: Multiplication by scalars is associative.

r(sX) (rs)X .

[sec. 11-31
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Corollary: Multiplication by scalars obeys the distributive

r(X + Y) . TX + rY

(r + s)X . TX + r.

Corollary: (-1)X . -X

Corollary: If X is [x1,x2] and if Y is (y1,y2] then

rX + sY is (rx1 + syl , rx2 + sy2) .

Definition 11-3b: Non zero vectors X and Y are said to

be parallel if and only if the directed line segments OX and OY

equivalent to them are collinear.

Theorem 11-3d: Non zero vectors X and Y are parallel if

and only if

Y = rX

for some non-zero real number r .

Proof: Let X be [x1,x2] and Y be [y1,y2], let X be

the point (x1,x2) and Y be the point (y1,y2) .

[sec. 11-3]
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Then OX A X , OY A Y . Then X 11 Y if and only if 0, X and
Y are collinear. But

OX = r OY

if and only if'

xl = ryl

x2 = ry2

which holds if and only if 0, X, Y are collinear.

,

IM.
IIIErrx

,P01111W.P.; a)I
;" I I

Fig. 11-3d

jt not parallel to Y

Theorem 11-3e: Let X and Y be any pair of non-zero, non-

parallel vectors. Then for each vector Z there are numbers r

and s such that

Z = rX + sY .

Zs
Proof: Let X, Y, Z be (x11x2] , [y1,y2] ,

are to show that the equations for r , 8

z, = rx1 + syl

z
2 = r x2 + sy

2

[sec. 11-3]
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..21%

have a unique solution (r,$) . Since X is not parallel to Y

it follows from Theorem 11-3d that

xly2 y1x2 4. 0 .

Our conclusion now follows from the result of Chapter 7, Section 3

on the existence and uniqueness of solution of equations.

Corollary: If rX sY . 0 (where 0 is a zero vector)

then r s . 0

Definition 11-3c: Any two non-zero, non-parallel vectors in

the plane are said to be a base for all the vectors of the plane.

[sec. 11-3]
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Fig. 11-3e

203
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Figure 11-3e shows two base vectors X ,and Y and vectors

OZ and OT expressed in the form rX + sY .

[1,0] and [0,1] form a base which is frequently'used.

The vector [1,0] is denoted by i and the vector [0,1] is

denoted by j .

Theorem 11-3f: X m ar "--+ b,r if and only if .X is

and (a,b) is the point P for which

Proof: If X is [a,b] , then, since

[a,b] m a[1,0] + b[0,1]

it follows that

X = ai + bj .

If X = ai + bj , then

X = a[1,0] + b[0,1] = [a,b] .

(3,2)

X=3i+2]

I I-

1 (1,0) (3,0) X

Fig. 11-3f

FigUre 11-3f shows an example of a vector X expressed as a

sum 3i1.*+ 2j .

207

[see. 11-3]



654

aercises 11-3

1. If A, B and C are respectively (1,2), (4,3), (6,1) find
X so that

(a) AB 4:- CX .

(b) AX CB .

(c) XA CB

(d) .

2. Same as Problem 1, if A, B, C are respectively (-1,2), (14,-3),

(-6,-1).

3. Find the components of

.

.

.

4. Determine x and y so that

(a) x[3,-1] + y[3,1] = [5,6]

(b) x[3,2] + y[2,3] = [1,2] .

(c) x[3,2] + y(-2,3] = [5,6]

(d) x[3,2] + y[6,4] = [-3,-2] (Innnitely many solutions).

5. Determine a and b so that

(a) [3,1] = al + bj .

(b) +

(c) i = a(-3,1] + b[1,-3] .

(d) j= a(-3,1] + b[1,-3] .

6. Determine a and b so that 31 - 21= a(31 + 4.1) + b(kt + 31)

(a) [3,2] + [4,1] .

(b) [3,-2] + (-4,1]

(c) 4[5,6]

(d) -4[5,6] .

(e) -1[5,6] .

(f) - [5,6] .

(g) 3[4,1] + 2(-1,3)

(h) 3[4,1] - 2(-1,3]

208
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11-4. Inner Product.

Our algebra of vectors does not yet include multiplication of

one vector by another. We now define such a product.

We first say what we mean by the angle between two vectors

X and Y which do not necessarily have a common initial point.

Definition 11-4a: Let X and Y be any non-zero vectors

and let OX and oy be vectors whose initial point is the origin

0 and which are equivalent respectively to X and Y . Then by

the angle between X and Y we mean the angle between OX and

OY .

Definition 11-4b: Let X and Y be any vectors. Then the

inner product of X and Y is the real number

IXI IYI cos e

where. 1Xlis the length of X , IY1 is the length of Y and 9 is

the angle between X and Y . (If X or Y is a --r,c) wetor

then e is not defined. We interpret the definitiom :o mean

that the inner product is zero, in this case.)

The inner product has important. properties. Befcmtt

investigate these properties of the inner product we roialGe the

inner product to a familiar mathematical relation--tht w of

-cosinea.

If our-given vectors X and 7 are not para1li!=-1 th.M,

'determine a triangle OXY , where 0 is the originnnd wheze X

and Y are endpoints of the vectors OX and OY mapr4tively

(equivalent to X and Y . We can find at least one ,4....sT1ier

appearance of the inner product by applying the law c.P' coqnes to

the triangle. It asserts (Figure 11-4a)

[Sec. 11-4]
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so that

Fig. ll-4a

IrrI2 lox12 + loY12 - 210x1 . loY1 cos e

loxi loYI cos e
1.6112 1--712

2

Thus`the expression we have called the 'inner product" is

suggested by the law of cosines.

We sometimes denote this product by the symbols X Y

(read "X dot Y") and sometimes call it the "dot product."

Usually, in algebra, a multiplication operation for a set of

objects assigns a member of this set to each pair of its members.

The inner product is not an operation of this type. It does not

assign a vector to a pair of vectors but rather it assigns a

real number to each pair of vectors.

210
[sec. ll-4]
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1X2120LE EvalUate X Y if rill . 2 , ftI = 3 and

(a) 0= 0 (b) e = 45° , (c) e = go° (d) 0 . 1800 .

Solution:

X . y . 2 3 cos 00 2 3 .

X Y d 2 3 cos 45° 2 3 . L= 3.17

X .7. 2 . 3 cos 90° . 2 3 0 =. 0

X . Y . 2 . 3 cos 180° =I 2 . 3 . (-1) . -6

The inner product has many applications. One of these is a test

for perpendicularity.
A

Theorem 11-4a: If X and Y are non-zero vectors, then

they are perpendicular if and only if

X Y 0 .

Proof: According to the definit pn of inner product

X Y !XI IYI cos e .

This product of real numbers is zero if and only if one of its

factors is zero. Since X and Y are non-zero vectors, the

numbers 'XI and IY1 are not zero. Therefore the product is

zero if and only if cos 0 . 0 , which is the case if and only if

X and Y are perpendicular.

The following theorem supplies a useful formula for the

inner product of vectors.

then

Theorem 11-4b: If X .= (x11x2] , Y = [Y10Y2]

X Y x

211.

[sec. 11-4]
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Proof: According to ihe law of cosines (see Figure 11-4b)

St

Fig. 11-4b

loxl larl cos e lox12 + toYl2 - 1XY

2 2 I, . 12 f N2x12 + x22 + Y1 + 3,2 - vin.-J11 0"*2-y2/
2

= xly1 + x2y2 .

Since, by definition, the left member of this equation is X Y
our theorem is proved.

2.Example 11-4b: If X is (3 4 ] and Y is [5,2] , find

X . Y .

Solution: X . Y . 3 . 5 + 4 . 2

. 23 .
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7.o2mple 11-4c: If X is [3,7] and Y is (-7,31 , show

that X and Y are perpendicular.

Solution: X Y = 3(-7) + 7 3 = 0 .

The conclusion follows from Theorem 11-4a, and the fact that X

and Y are rnn.---

A useful fact about inner products is that they have some of

the algebraic properties of products of numbers. The following

theorem gives one such common property.

Theorem 11-4c: If X . Y , Z are any vectors, then

x (Y +7) =x . y + x .z

(tx) . = t(-it

Proof: Let X . [x,xj P Y = [Y1a2] [zi,z2] Then

X (X + Z) = [41,x2] (Y1 + z1 , y2 z2]

= x1(y1 z1) + x2(y2 + z2)

= x1y1 x2Y2 xizi x2z2

=XY+X Z

(tX) Y = [tx1,tx2] [y1,y

= tx1y1 tx2y2

t(x1y1 x2y2)

= t(3t .

[see. 11-4]
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Corollary: X (aY + 1;2) a(X Y) + b(X

In certain applications of vectors to physics the notion of a

component of a vector in the direction of another vector is

important. We now define this concept.

Definition 11-4c: Let X be any non-zero vector and let Y

be any vector. Then the component of Y in the direction of X

is the number given by each of the following equal expressions:

X Y IA il cos e
= 111 cos e.

IX1 171

NOTE: The component of 1 in the direction of t can be

described geometrically (see Figure 11-4c).

x
1 L

Fig. 11-4c

1

x 1

'In both parts of the figure P is the foot of the perpen-

dicular from the initial point of Y to the line of X , and

is the foot of the perpendicular from the terminal point of Y to

this line. In the first part the component of Y in the direction

of X turns out to be the distance from P to Q . In the

second part this component turns out to be the negative of the

distance from P to Q .

214

[sec. 11-4]
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The inner product is used frequently in applications of

vectors to physics. For the moment we consider inner products

from a purely mathematical standpoint.

Example 11-4d: Let X be any vector parallel to the

positive x-axis, let Y be any vector parallel to the positive

y-axis and let Z be the vector [p,q]. Show that p and q are

the components of Z in the direction of X and Y respectively.

Solution: According to Theorem lo-5a

cos e
q2

so p = cos e .

q2

Since IZI =.1/32 q , we conclude that

p = 1ZI COS e .

_>
The angle between Z and the y-axis is - 0 . Conse-

...>

quently the component of Z in the direction of Y is

),A)2 q2
cos(7i - e

Since cos(ir - e ) = sin e and since sin 0
2 2

we conclude that this component is, in fact,

V/ 2 2
v/p2 (12

p or q .

Vectors in Three Dimensions: Much of our discussion of

vectors in the plane can be carried over to three dimensions

with only minor modifications.

2 1 :5
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The portions about directed line segments require no modifi-
cation. When we come to coordinates and components, the con-

clusions are as follows:

1. The components of a vector in three dimensional space

are an ordered triple [a,b,cl of real numbers.

2. Two vectors [a,b,c] and [p,q,r] are equal if and

only if a=p,b=q and c.r.
. The addition of vectors [a,b,c] and [p,q,r] is

given by the rule

(a,b,c] + [p,q,r] . [a + p, b + q, c + r] .

4. Scalar multiplication of vectors is given by the rule

r[a,b,c) [ra,rb,rc].

5. The unit base vectors associated with the coordinate

axes are

. (1,0,0]

= [0,1,0]

k [0,0,1] .

Figure 11-4d shows these base vectors.

Fig. 11-4d

2 IG
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The vector V . ki + 8j + 8k is illustrated in

Figure 11-4e.

.

Fig. 11-4e

6. The inner product of V and W is still given by

V W = iiiifl CO8 e

In component form if V is (v1,v2,v3] and It is

[w1,w23w3] , then,

V W = vlwl + v2w2 + v3w3

also

1. Find X Y if

(a) X.i,Y=
(b) X=i,Y= i

(c) Y i

(d) X =,i=j

2 2 2
+ v2 + v3 .

Exercises 11-4

2! 1

[sec. 11-4]
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(e) +j,Y=i-j.
(f) X . 21 + 3j , Y 5j .

(g) X . -2i 3j , -Iti 4. 5j .

(h) X = + bj, Y + dj .

(i) X . ai + br , Y = 4X .

(j) X ai + sX .

2. Find the angle betweei; X and Y if ill 2 , . 3

and X Y is

(a) 0 , (b) 1 , , (d) 3 , (e) -4 , (0 5 , (g) 6 ,

(h) -6 .

3. If X . 3i + Itj, determine a so that Y is perpendicular

to X , if Y is

(a) ar 1t, (c) aj

(b) ar , (d) ai - 3J .

4. Find the angle between X and Y in each part of Exercise 1

above.

1

5; If a
2
+ b

2
* 0 prove that, ai + bj is perpendicular to

_N. _N.

ci + dj if and only if + biis parallel to -dr + cj .

6. Find the component of Y in the direction of X if
_N.

(a) X . i , Y 3i + 4j . (e) X= 3i + 4j , . 31 -+ ltj.

(b) X . j , Y = 3i + 4j . (f ) X = 3.37- , Y = 51 + 2r .

....N.

( C ) X . 31 + 4j i . (g) X . 3i + 4j Y a1 + bj .

(d) X = 3i + Y = j . (h) X . pi .1. qj , Y = al + bj .

[sec. 11-4]
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11-5. A2211Eltaat of Vectors in physics.

The notion of "force" is one of the important concepts of

physics. This is the abstraction which physicists have invented

to describe "pushes" and "pulls" and to account for the effects

that pushes and pulls produce.

The student who knows something about vectors can readily

learn about forces. The connecting links between the concepti of

"force" and "vector" can be stated as follows:

1. Every force can be represented as a vector. The

direction of the force is the same as the direction

of its representative,vector. The magnitude of the

force determines the length of its representing

vector, once a "scale" has been selected.

Example 11-5a: A red-headed man is standing on top of a hill,

staring into space. He weighs 200 pounds. Represent as a vector

each of the following:

(a) the downward pull of the earth's gravity on him,

(b) the upward push of the hill on him.

Solution: (a) (b)

&Isle: 1 inch . 200 lbs. Scale: 1 inch . 200 lbs.

2. Any collection of forces which act on a single body

is equivalent to a single force, called their

resultant. If all the forces are represented as

vectors on the same scale, then the vector which

represents the resultant of the forces is the sum

of these vectors.

[sec. 11-5]
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Example Represent each of the following forces as a,

vector, and find the vector which represents their resultant: A

force F1 of 300 pounds directed to the right, a force F2 of

400 pounds directed at an angle of 45° with the x-axis and a force

of 500 pounds directed upward.

Solution: (graphical) Using the scale 1 inch = 400 pounds
X represents Fi , Y represents F2 , Z represents F3 .

A

...A.

X 4- Y Z represents the resultant of F1 , F2 , F3 .

Its length is a little less than 5/2 inches; its direction is

about 54° .

3. If F and G are two forces which have the same

direction, then they have a numerical ratio and

there is a number r such that r times force F

is equivalent to force 0. Moreover if F is the

vector which represents force F , then rF is

the vector which represents force 0 , where r is

the ratio of force G to force F .

2,20
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Examnle 2.1.5.2.: Emily and Elsie are identical twins. They are

sitting on a fence. If F represents the total force Emily and

Elsie exert on the fence and if 0 represents the force the

fence exerts on Emily alone, express

(a) F in terms of 0 .

(b) G in terms of F .

Solution:

(a) F = -20 .

(b)

A body at rest is said to be in equilibrium. It is a fact of

physics that if a body is at rest the resultant of all the forces

acting on the body has magnitude zero. (Note: The converse of

this is not true, since the resultant of all the forces which act

on a moving body can also be zero. According to the laws of

physics, if the sum of all the farces which act on a body is zero,

then the body must be either at rest or it must move in a straight

line with constant speed.)

21.
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Exercises 11-5a

1. A weight _::spended by ropes as show': imthe figure.

If the wefii4W_ aighs 10 pounds, what L.. t force exerted

, on the Junctf i C by the rope CB ?

2. A weight of T,000 pounds is suspended fr-7-m- wires as shown

in the figure.

horizontal

The distance AB is 20 feet, AC 1.3 10 feet, and CB is

10 .1-5 feet. What force does the wire AC exert on the

junction C ? What force does wire BC exert on C ? If

all three wires are about equally strong, which wireis

most likely to break? Which wire is least likely to break?

.

2 2
[sec. 11-5]
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3. A 5000 pound weight is suspended as shpr-n-

-Yin-1 the tension in each of the ropaa CA. mf W.

A

4. A barrel is held in place on an inclined plane by a
-A

force OP operating parallel to the plane and anDther

operating perpendicular to it. (See diagram.)

If the weight of the barrel is 300 pounds, (IOW! = 300)
-

and the plane makes an angle of 23° .with the horizontal

find
.
II and I .6-. I . (Hint: Introduce a coordinte systerr.

with origin at 0 and OW as negative y-axis.)

[sec. 11-5]
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5. içZt iE suspended by ropes as shown tm the

7the !_flIght weighs 20 pounds,. what is the fbrce

the j=hction C by the rope CH? By the rope

and CB are equally strong, which one is more

figure. If

exerted on

AC? If AC

likely to break?

horizontal

6. A 500 pound weight is suspended as shown in the figure. Find

each of the forces exerted on point C .

A

hinge
7. A 2,000 pound weight is lifted at constant speed,

the diagram. Find each of the forces exerted on point C

500 lb. weight

as shown in

W - 2000 lb. weight

[sec. 11-5]
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drag

,s, propeller thrust

force of gravity

The motion of airplanes provides another application of

vectors. Soam technical terms involved:are listed and illustrated

in the figun

Lift: i" force perpen±lcular to the direction of motion.

This is the "lifttog force" of the wing.

Gravity: F --a force directed downward.
_1

propeller thrust: Fpt
--a forward force in the direction of

motion.

Dragl Fd--a backward force parallel to the:motion. This

force is due to wind resistance.

Effective propeller thrust: F
ept--

the prapeller thrust minus

the drag.

The physical principle we shall use states that ato#y

motion will continue to move in a straigtit line with mctant
speed if and only if the resultant of all the-forces acting on

the body is zero.

[sec. 11-5]
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8. An ainnlane weighing 6,000 pcnds c1.i.s 7,7.eadi1y upwards

at an angle of 30°. Find the effectc:7e nrnpeller thrust

and the lift.

9 An airplane weighing 10,000 p7-unds cllmbs aat an angle of L77"-

with constant speed. Find th. effec--L:vE, 77-opener thrust

and the lift.

10. A motorless glider descends at an ang_;..a-_ IO° with consta=7

speed. If the glide:, -and occupant tozmz.r:er weigh 500 pountz,

find the drag and the lift.

The term "work" as trI-e physicists use lt zlso provides an

example of a concept which can be discussed in terms of vectors.

Consider for instance a tractor pulling a box-car-along a track.

;

Track

'=-77(Direction of motion)

z

Fig. 11-5a

The effect of the tractorls force deperzta on the angDa e .

also involves the force itself and the-placement rzroduceM The

term "work," as used -In physics, is gi,..Fem in this caae by

F S , where F is the force-vector :7-X zr-;e tractor and dtare S

_fa the displacement of the box ca

More generally, if' a force ar:=E body and =r ()duces a

displacement S while it acts, then 7Ecr-n- done tzF: the f'zrce

defined to be F S , where 72- is thector wh renresents

the force and where S is the vectorepresents tte
placement.

2 :1
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Example 11-5e: 1f-the tr-Actor of Figure 11-5a exerts a

force of 1,000 pounds at an angle of 30° to the track, how much

work does the tractor do in moving a string of cars 2,000 feet?

Solution: Evaluate the e7..:pres8ion IFI1S1 cos 0 where

1111 1,000 pounds, I51 . 2,000 feet, cos e .66. The vaLlie of

this product is approximately 1,732,000 foot pcmds.

Exercises 11-5b

1. A sled i pulled a distance of d feet by a force of p

rounds iii=lch makes an angle of 0 with the horizontal. Find

the work Jinne if

(a) d = 10 feet, p = 10 pounds, 8 = 10° .

d 100 feet, p = 10 pounds, e = 20° .

d = 1,000 feet, p 10 pounds, e .30° .

:How far can the.sled be dragged if the numbeT of available

foot pounds of work is 1,000 and if

(d) p = 10 pounds, 8 = 10° .

(?e) p ... 100 pounds, 9 = 20° .

p --. 100 pounds, 0

(g) p = 100 pounds, 9 . 89° .

2. The drawing shows a smooth incline d feet long which

makes an angle 9 with the horizontal.

[sec. 11-5]
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How much work is done in moving an object weighinz p pounds.

from R to S if

(a) d = 10 feet, p . 10 pounds, e 100 .

(b) d . 100 feet, p = 10 pounds, e = 20° .

(c) d . 100 feet, p = 10 pounds, e . 30° .

How far can the weight be moved if the number of available

foot pounds is 1,000 and if

(d) p . 10 pounds, e . 100 .

(e) p = 10 pounds, e = 200 .

(f) p = 100 pounds, e = 10 .

(g) p . 100 pounds, e . 89° .

Velocity is another concept of physics that can be repvesented

by means of vectors. In ordinary languav the words "speed" and

"velocity" are used as synonyms. In physics the word "speee

refers to the actual time rate of change of distance (the kind of

information supplied by an automobile speedometer), and "vellitr"

refers to the vector whose direction is the direction of the

motion and whose length representz the speed on same given sz,1e.

When velocities are represented by vectors, the lengths of thea%e

vectors give the corresponding speeds.

Figure 11-5b shows vectors which represent some ofthe

velocities of a body moving around a circle with constant

Fig. 11-5b

[sec. 11-5]
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It is easTto imagine situations in which velocities are

compounded out of other velocities. For instance, a man walking

across the deck of a moving boat has a velocity relative to the

water which is compounded out of his velocity relative to the boat

and out of the boatts velocity relative to the water. It is a

principle of physics that the vector which represents such a

compound velocity is the sum of the vectors which represent the

individual velocities.

Example 11-5f:- A ship sails east at 20 miles per hour. A

man walks across its deck toward the south at 4 miles per hour.

What is the manis vej.Ocity relative to the water?

Solution: In the figure,

represents the ship's velocity

relative to the water, Y

represents the man's velocity

relative to the ship. Conse-
_,.

quently, X + Y represents

the manis velocity relative to

the water. Its length is

20

V202 + 42 20.4

and its direction is approximately 22° south of east.

Exercises 11-5c

1. A river 1 mile wide flows at the rate

of 3 miles per hour. A man rows

across the river, starting at A and

aiming his boat toward B the nearest

point on the opposite shore as shown in

the diagram. If it took 30 minutes for

him to make the trip, how far did he row?

[sec. 11-5]
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2. A river is .;*- mile wide and flows at the rate of 4 miles

per hour. A man rows across the river in 25 minutes, landing

1.3 miles farther downstream on the opposite shore. How far

did he row? In what direction did he head?

3. A river one mile wide flows at a rato of 4 miles per hour.

A man wishes to row in a straight line to a point on the

opposite shore two miles upstream. How fast must he row

in order to make the trip in one hour?

4. A body starts at (0,0))at the time t = 0 It moves with

constant velocity, and 20 seconds later it is at the point

(40,30). Find its speed and its velocity, if one unit of

length of vector corresponds to 100 feet per second.

5. A body moves with constant velocity which is represented by

the vector V= 101 + 10j If the body is at the point

(0,11 at time t . 2 , where will it be when t = 15 ? The

scale is: One unit of length of vector corresponds to 10

miles per hour; the time t is measured in hours.

6. Ship A starts from point (2,4) at time t = 0 Its

velocity is constant, and represented by the vector

Va = 4i - 3,1 . Ship B starts at the point (-1,-1) at time

t = 1 . Its velocity is also constant, and is represented

.by the vector Vb = 71 + j . Will the ships collide?

-(Assume that a consistent scale has been used in setting up

the vector representation.)

7. Ship A starts at point (2,7) at time t = 0 . Its

(constant) velocity is represented by the vector

V
a

. 31 - 2j. Ship B starts at point (-1,-1) at time t = 1.

Its (constant) velocity is represented by the vector

V
b

51 Will the ships collide?

*8. A river is 1/2 mile wide and flows at the rate of 4 miles per

hour. A man can row at the rate of 3 miles per hour. If he

starts from point A and rows to the opposite shore, what is

the farthest point upstream at which he can reach the

opposite shore? In what direction should he head?

[sec. 11-5]
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Exercises 11-5d

1. Show each of the following graphically:

(a) 31' + 81' + 5it . (f ) 21- - 2j .

(b) 31+ 3 . (g) 7k .

(c) 4i + 4j . (h) 51 .

(d) 5T.b + J . (i) 7i

(e) 5i + 5J + k . (j ) ab + 8J + 31-t .

2. Find A B , if:
...>

(a) A = 31 + 2j + 4k ; B = 2i + j + 2k .

(b) A . + 4j 2k ; B 2i + 2j + 2k
_>

(c) A= 3i + 3k ; B 4j .

(d) A . 4i + 4J ; B 7k .

( e ) A ,.., 14,1 4- 2k ; B= 5i .

3. Find the cosine of the angle between vectors A and B in

each part of Problem 2.

4. Find the cosine of the angle between the vectors A and B
_> _>

if A . 31 + 2j - k

and B 41 - 3j + 617c-".

A lighting fixture is suspended as shown:

View from top

perspective view

Side View
(the angle is
shown in its
true shape;
is an angle of
600.)

vertical view

The fixture weighs 15 pounds. Find the tension in each of

the supporting cables.

[sec. 11-5)

231



678

6. An airplane is climbing at an angle of 30°. Its

speed is 100 m.p.h. Although a wind is blowing from west

to east with a velocity of 30 7-p.h., the pilot wiates to

climb while heading due north. What is the ground speed

of the airplane?

7. Suppose that in Problem 6 the pilot climbs at an angle of
30°, but does not insist on heading north_ What is the

fastest ground speed that he can achieve? Wilich way should

he head to achieve this speed? What is the least graund speed

that he can achieve? Which way should he head to achieve
this?

8. Prove that

a(x - d) + b(y - e) + c(z f) . 0

is the'equation of a plane through the point q(d,e,f) with

the normal vector

N = ai + bj + ck .

9. Find a vector normal to the plane

7x - 3y + 5z . 12 .

10, Find the distance from the point (0,0,0) 70 the plane

5x + 12y z 1 .

11. Find the distance from the plane

x + 257 - 3z = 1

to the origin.

11-6. Vectors as a Formal Mathematical Syste=.

In our discussion of foraes and velocities "Uy means of

vectors we made a few assumptions which we did.mot justify. We

applied vector methods to the solution of force:and velocity

problems in a fashion which turns out to be cor=ect but which we

have not backed up with a convincing argument. Our thinking was

2, 3 2
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something like this. "Some of the rules that forces obey are very

much like the rules that vectors obey. Therefore we can talk

about forces as'though they were vectors." This is not really a

sound argument, and if it were trusted in all cases it could lead

to chaos. For instance, some of the rules,that real numbers obey

are the rules that integers obey, and it is not the case that real

numbers can be regal:ded as integers.

Nevertheless, it really was correct to treat forces as

vectors and we now explore a point of view which gives convincing

evidence for this statement. The key fact in this examination is

that every mathematical system which obeys certain of the laws

which vectors obey must be essentially the same as the system of

vectors itself.

We now formulate three goals:

1. To list the rules in question.

2. To give a precise specification of what we mean by saying that

a mathematical system is "essentially the same" as a system

of vectors.

3. To prove that systems which obey the stated rules are

essentially the same as the system of vectors.

I. We state certain rules which vectors have been Shown to

obey. We have a set S , two operations e , , for which,

for all a ,49 , 1- , in S and for all real numbers r , s

(1) m 101. is in S .

(2)

(3) cc e (fge 7-) = ( cc

(4) There is a zero element Opin S such that

(5) Each m has an additive inverse - cC for which

[sec. 11-6]
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(6) r 0 a is in S .

(7) r (5 cc ) (rs) 0:

(8) (r + s) 0 cc . (r 0 cc )0(s 0 a ) .

(9) r 0 (cc (D4 ) (r cc (r ag) .

(10) 1

(11) There are two members y and w of S such that

each m has a unique representation

m = (a 0 y) ED (bow) .

II. We have already shown that vectors satisfy such rules,

where S is interpreted as the set of vectors, ED is interpreted

as ordinary + for vectors and where 0 is interpreted as

sCalar multiplication. We take it as given (by physicists

presumably) that forces also satisfy these rules, where S is the
set of forces, cc, ED /3 means the resultant of a and and 0
means scalar multiplication. -We are to show that forces are

essentially the same as vectors. What do we mean by "essentially

the same?" We mean that the sYstem of forces is isomorphic to

the system of vectors. What do we mean by "isomorphic"? That

there is a one-to-one correspondence between the set of forces

and the set of vectors such that, if force cc corresponds to

vector A and if force/6 corresponds to vector B , then

cc eA9 corresponds to vector A + B and force r cC corresponds

to vector rA .

III. We now state and prove the promised theorem.

Theorem: Any system S which satisfies Rules 1-11 is

isomorphic to the system of vectors in a plane.

Proof: We first set up a one-to-one correspondence between

the members of S and the vectors. For each a of 8 we invoke

Item 11 to write

cc = (a y )10 (b Ow ) .

23 1
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The pair (a,b) which figures in this expression determines a

unique vector A , namely [a,b] , which we pair with a This

process assigns to each a of S a vector A as its image. We

must show that if (a,b] is the image of a and if (c,d) is

the image of,&, then (a + c, b + d] is the image of cC +

and that (ra,rb] -is the image of r 0 cc . To prove the first,

write
m= (a y )0 (10 w )

(c0 y) ® (d 0 w )

Therefore a ((a () y )® (b 0 w )) ED ((c y )ED (d () w ))

which equals using Rules 2 and 3,

((cC 0 y)(:)(c0y).)C)((bC) w )e(dO w ))
This in turn equals

((a + c)(D y)®((b + d)() w )

by virtue of Rule 8. We see then that our one.to-one correspond-

ence assigns [a + c, b + d) to a + .

We now examine r() cc . We write

re cc = rQ ((a()y ) (be w

which by Rule 9 can be written as

r () (a0 y )(Dr 0 (be w) .

According to Rule 7, this last equals

( (ra) Y )( (rb ) w )

whence the image of r 0 a is indeed [ra,rb) .

This completes our proof. Notice that we did not use all the

rules given. They are in fact redundant. If the last rule is

left out, the remaining set of rules is not redundant, and is

the set of axioms which defines a vector space. The Rules 1-11

2 3 5
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are axioms for a more special mathematical system--a

two-dimensional vector space,.

We have shown that every system which satisfies Rules 1-11
is isomorphic to our system of vectors. We have not shown that

the system of forces satisfiee these rules. We take the
physicist's word for this. We have not shown that to be
"isomorphic" really means to be "essentially the same." Let us

meditate a little on this and then take the mathematician's word
for it.

Exercises 11-6

1. Let S be the system of complex numbers. Does S satisfy
Rules 1-11 if ED is interpreted as ordinary addition of

complex numbers and 0 as ordinary multiplication of a real

number by a complex number. (Hint: In checking Rule 11
try 1 for y and i for w ).

2. Let S be the set of all ordered pairs (a,b) of real

numbers, let ED be defined by (a,b) (c,d) = (a + c, b + d)
and let 0 be defined by

r (a,b) =

Which of the Rules 1-11 does this system obey?

3. Let S be the set of all ordered pairs (a,b) of real

numbers, let 0 be defined by (a,b)e(c,d) 1.14-rs.1),

and let 0 be defined by r 0(a,b) = (ra,rb) . Which of
the Rules 1-11 does this system obey?

2 3 6
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Chapter 12

POLAR FORM OF COMPLEX NUMBERS

12-1. Introduction.

In Chapter 5 we introduced complex numbers z = x + iy,

x and y real numbers. We found (Theorem 5-4) that each complex

number z is uniquely determined by its "real" and "imaginary"

parts, x and y , respectively; i.e.,

zi = xl + iy1 and z2 = x2 + 1y2 are equal

if and only if xl = x2 and 5,1 = y2 .

We also discussed the addition and multiplication of complex

numbers given by the formulas:

12-la (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2).,

12-lb (x1 + iy1)(x2 + iy2) = (x1x2 - y1y2) + i(x1y2 + x2y1)

We found in Section 5-7 that the addition of complex numbers

may be described geometrically by means of a parallelogram. In

Section 12-2 we discuss a geometrical description of the product

of two complex numbers.

The remainder of this section points out some similarities

between the work in Chapters 5 and 11. Exercises 12-1 provide a

review of some of the work in Chapter 5.

237
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CoMplex Numbers and Vectors. We call attention to the

important case of Formula 12-1b in which yl = 0:

12-1c xl(x2 + iy2) = (x1x2) + i(x1y2) .

In view of Chapter 11, this special case appears in a new light.

Note the similarity between Theorem 5-4 and Formulas 12-1a, 12-1c

and the statements in Chapter 11 concerning equality, sum, and

scalar multiple of vectors in a plane.

Just as two complex numbers are equal if and only if their

real and imaginary parts are the same, two vectors in a plane are

equal if and only if their x and y components are the same.

This similarity is more than a coincidence: our geometrical

representation of complex numbers is exactly the same as our

pictures of vectors in a plane.
..... .

A=k + jy

Fig. 12-la

Moreover we add complex numbers just as we add vectors and we use

the same picture (a parallelogram) to represent sums in each case.

Multiplication of complex numbers by real numbers, as in

Formula 12-1c, corresponds exactly to the multiplication of

vectors in a plane by scalars: we multiply each "component" by

the real multiplier.

238
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We thus recognize a kind of identity between these topics.

It isstrue that we have uSed a different set of words in what we

,have'said on these two subjects, but our formulas show that even

with this difference in the words we have actually been saying

precisely the same things in two different contexts.

Two mathematical systems which are the same in this.sense are

Often called abstractly identical or isomorphic. (The word

"isomorphic" has the Greek roots "iso," meaning "same," and

morphos," meaning "shape" or "form." See page'680.)

It must be emphasized that our isomorphism is between frag-

ments of these two subjects. The theory of complex numbers and

the theory of vectors in a plane have the same form only whan we

restrict our attention to the notion cf. equality and the operations

of addition and multiplication by a reaa nrimber (scalar), ,and to

-ideas depending solely on these.

Isomorphism--like analogy--is not:necessarily complete

identity. Our two systems--vectors in.a plane and complex

numbers--differ remarkably, and in two very important respects.

They differ when it becomes a matter of discussing an operation of

"multiplication" between elements of the two systems: product of

two complex numbers, and product of two vectors. Perhaps the most

startling difference between the products in our two systems is

, the matter of closure. The product of two complex numbers is a

complex number, the product of two yectors'in a plane is not a

..vector in the plane. In the case of the inner product, it is not

a vector of any kind, it is a scalar. Multiplication of complex

numbers is associative. The question of associativity for the

inner product of vectors is ludicrous; the very expressions

A (B C) , (A B) C

whose equality is presumably at issue do not make sense since the

factors in parentheses, being scalars, cannot be "dotted" onto a

vector. Only a vector can be "dotted" onto another vector.

[sec. 12-1]
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In Chapter 13, we discussed the geometric interpretation of

the inner product of vectors. In Section 12-2 we pursue the

analogous question for the product of complex numbers. Such an

interpretation will serve to emphasize the differences we have

been discussing.

The two systems also differ fundamentally if one attempts to

extend them from a plane to a space of three or more dimensions.

Vectors in spaces having 3, 4, , 6 No , ... dimensions have

very important applications in physics, chemistry and engineering.

(N
o is Avogadro,s number, 6.025 x.102 ) On the'other hand, ex.

tensions of the system of complex numbers are a bit biza,Irre and,

in any case, are another matter entrely. They are beyand the

scope of this book.

Exercises 12-1. (Review of Chapter 5.)

1. Write the following in standard form:

(a) 1

(b) i

(c) i

240240

rite the conjugate for each of the following complex numbers:

(a) 2 - 31

(b) 5 +

(c) -2 + 31

3. /f z = a + bi , express z 7 in standard form.
2 - 3i-

4. Express the quotient 77-7r in standard form.
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5. Find the absolute value of:

(a) 4 + 31

(b) -2 - 51

(c) - 31

6. Solve the equation 2z2 + z + 1 = 0 .

7. Plot each of the following complex numbers in an Argand

Diagram:

(a) 2 + (d) 5

(b) -3 + 21 (e) -5 - 31

(c) 31

8. Find the sum, difference, or product as indicated:

(a) (2 - 31) + (-4 + 1) (e) 5 4. (2 - 1)

(b) (-3 + 21) + (1 - 1) (0 3(2 - 31)

(c) (2 + 31) - (4 - 21) (g) (2 + 31)(1 - 1)

(d) 5 - (4 - 21) (h) (1 + 20(1 - 21)

9. If a and b are real numbers, under what conditions will

a + bi = b + ai ?

10. Solve each of the following for the real numbers x and y :

(a) (x + iy) - 31) = 4 - i

(b) 2(x 4. iy) - (3 - 21) = 1

(c) ty _ 21

(d) (2x + i)(8 - ix) = 34

1
11. Find.the value of a4---7b-r by the following alternate methods:

1
(a) 77-Fur is a number x + yi such that

(x + yi)(a + bi) = 1 . From this, obtain two equations

for x , y , and solve them.

[sec. 12-1)
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(b) a + bi
may be expressed as a number x + yi in

standard form by making use of the conjugate of

a 4. bi .

1 1
12. Simplify:.

1
77177,

12-2. Products and Polar Form.

In this section we consider the problem of a geometrical

representation for the product of two complex numbers. We shall

find some of the ideas and methods in Chapter 10 very useful in

solving this problem. Moreover the introduction of trigonometrical

notions enables us to write complex numbers in a form particularly

convenient for the study of powers and roots given in the

remaining sections of this chapter.

We know from Chapter 5 that the absolute value of a product

of two complex numbers is the product of their absolute values:

k1z21 = IZlI 1Z21

In view of Formula 12-1b, this follows easily from the identity

(x1x2 - y1y2)
2 + (x1y2 + x2y1)

2
. (x1

2
+ y12 )(x 2 + y22) .

This fact alone tells us something

rather interesting about the product.

Suppose z1 represents a point on

the circle with center 0 and

radius r1 . Then r1 = 1z11 . If

z 2
represents a point on the

circle with center 0 and radius r
2'

then r2 = 1z21 , and the product

z122 represents a point on the

circle with center 0 and radius

r1r2 since r1r2= Iziz2l . 242
[%lec. 12-2]
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Given that z
1
z 2

represents some point on the circle, our

problem is now to locate whieh point on the circle.

We discussed questions of this

kind in Chapter 10. In Figure 12-2b

we reproduce the fundamental diagram

from Chapter 10, drawn in an Argand

diagram. As in Chapter 10 we have

x = r cos e ,

y = r sin e

Fig. 12-2b

so, if z = x + iy is in standard form we can write

12-2a z = r(cos e + I sin 8 )

where r Izl
2 + y

2
.

Formula 12-2a, expressing z in terms of r and 0 enables

us to solve our problem. Indeed, suppose

= r1(cos 8 + i sin e 1) ,

z2 = r2(cos e + j sin e 2) .

If we form the product of these expressions, we obtain

ziz2 = r1r2(cos e + i in e 1)(cos e + sin e 2)

12-2b r1r2((cos 8 cos 8 - sin e sin 8 2)

+ i(sin 0 cos 8 2 + cos 0 sin e 2))

Using the addition theorems for cosine and sine (Chapter 10),

cos( e + e ) . cos 01 cos e - sin 01 sin 82

sin( e + e 2) = sin 1 cos 8 2 + cos 61 sin 62 ,

we can simplify 12-2b.

[sec. 12-2]
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Thus

12-2c z1z2 = r1r2(cos(9 + 92) + i sin(9 1 + e2))

Formula 12-2c gives the following geometrical description of

the product of a pair of complex numbers: to multiply two complex

numbers one multiplies their absolute values and adds their angles.

Fig. 12-2c

Formula 12-2a, expressing the complex number z in terms of

r and 9 , is called the polar form of z . We have seen that

.
Formula 12-2c gives Us a way to deacribe.a product in geometrical

terms. We shall also see that the algebraic consequences of

these formulas are extremely important.

almas 12-2a: Multiply 31 and 1 + I , plot the Product

and the factors, and check the result using polar forms of the

numbers involved.

241
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Solution: 31(1 + i) = 31 - 3 = -3 + 31

1311 . 3 , 11 + 11 =.177, 1_3 3i1 317

itiia1 fdrille! 31 = 3(cos + i sin i)

1 + I =,/7(cos + i sin i)

-3 + 31 . 3,or cosi + i) + i sin61 +

= 317ff(cos i sin ) .

Example 12-2b: (1 + i)(1 - i) . 2 .

1 + =,./727(cos + i sin 4) ,

1 - i =.,fi[cos(- + sin(- ,

(1 + 1)(1 - 1) = (Iff)2(cos(i - + i sin(i - -101

= 2(cos 0 + I sin 0)

= 2

Let us examine the relation between the standard form of z

and the polar form of z , (z 0) . For the standard form we

write

z = x + iy (x and y real) ;

for the polar form We write

z = Izi(cOs e + i sin e ) .

Since

cos e_ , sin e=
xy x + y

the polar form, expressed in terms of x and y , is simply

z = 1z1(iir + I TfT) .

'4:4 5
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The polar form of z. may be described by saying that it

resolves z into a product of two Sectors: the first factor

being Iz( , a non-negative real number, the second factor

cose+isine= TET , which is complex, has absolute

value 1:

.

Icos e + i sin I e ).2 + (sin )
2
= 1 .

Example 12-2c: The polar form of 1 + i is

.-Iff(cos + j. sin ,

1 1
since . cos .4- , = sin

EXample 12-2q: The polar form of 3 + 4i is

5(2. i 21) . 5(cos + i sin ) ,p 5

3 4
where cos 0 . , sin e =

These examples illustrate the fact that one does not have to

refer to a table of trigonometric functions in order to write the

polar form of a complex number when it is given in standard form.

Reference to a table is necessary only for determining, or estima-

ting, the value of 9 . We shall see that for many calculations

involving the polar form it is not necessary to find e itself

--knowing only cos e and sin 9 being sufficient.

It is clear, on geometrical grounds, that there are many

values of e corresponding to each given non-zero complex number z

However, these values of 9 are related to each other in a very

simple way since each of them measures an angle from the positive

2 40
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x-axis to the ray from 0 through the point representing z. Such

angles differ by some number of complete revolutions about 0 , so

the values of e measuring these angles differ by integral

multiples of 2r . Each ray from 0 is terminal side of one

angle, having the positive x-axis as initial side, which is

less than one complete revolution. If e is the radian measure of

such an angle then 0 < e < 2r ; we shall say that e is the

argument of each non-zero compIex number z corresponding to a

point on the ray. We write e = arg z Thus e = arg z means

z = r(cos e + i sin e ) , r > 0 , and 0 < e < 2r .

.2
Since Icos e + i sin e .Acoo e) 2 (sin e) = 1 , the

complex number cos e + i sin e represents a point on the "unit

circle"--i.e., the circle with center 0 and radius 1 .

Consider two such complex numbers: cos 0 + i sin 0 and

cos e + i Fin e . By the remarks in the previous paragraph, we

have the following theorem.

Theorem 12-2a: cos 0 + i sin 0 . cos e + i sine

if and only if

0 = e + 2kr , for some integer k .

This theorem may be proved directly from the periodicity

properties of the cosine and sine functions without appeal to

geometrical ideas. See Exercise 12-2.
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Exercises 12-2

1. Express each of the following complex numbers in polar form

and determine arg z :

(a) z . 2 + 21 (d) z _ 4. 4;1.

(b) z = -3 + 31 (e) z 4

(c) z = z - 21

2. Express each of the following complex numbers in standard

form a + bi :

(a) 3(cos 1 sin i) (d) 5(cos T + I sin 77.)

(b) 2(cos 4 + I sin ;!1) (e) cos 2rg 1 sin ir

(c) cos -4-ir + I sin -1-1-E 2(cos 0 + i. sin 0)

3. Find the indicated products in polar form and express them

in standard form:

...ir 2 2.7r
(a) 2(cos i + 1 sin /5) 3(cos -7rs-- + i sin

277- 2.7r r
(b) (cos -n- + 1 sin -r) (cos .6 + 1 sin g)

(c) (3(cos i + 1 sin ji)) 2

4. Prove that (r(cos e + I sin e ))
2

r
2
(cos 2 e + I sin 2 e )

where r is a real number.

5. Prove that, if z, = r1(cos e + sin e 1) , r1 real,

and z2 = r2(cos e + sin e 2) / 0, r2 real,

then
z r

= cos(1 1
----L

r e - e 2) + sin(e - e2)) .

z r
2 2

6. Show that F = 2- if Izi = 1 .
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7. Show that two non-zero complex numbers lie on the same ray

from 0 if and only if their ratio is a positive real number.

8. Prove Theorem 12-2a without appealing to geometry; i.e., show

that

and

(a) cos 0 + i sin 0 = cos e + i sine

if and only if 0 = e + 2kr , where k is some integer .

(Hint: Prove first that (a holds if and only if

cos 0 + i sin
(b) cos e + n e 1

Rewrite (b) using Exercise 5; equate rea and imaginary

parts and show that the two conditions you get hold if

and only if' cos(0 - ) = 1 . But the last condition

holds if and only if 0 - e = 2kr, 0 for some integer k .

Why?]

12-3. Integral Powers; Theorem of deMoivre.

We saw in Section 12-2 that if

z = r(cos e + i sin 0 )

zt = rt(cos e 1 + i sin e 1) ,

then zzl = rrl[cos( e + e I) + i sin( e + e 1)) .

We now turn to the case where z and z1 are ecival and

obtain for the square of a complex number

z
2 . r2 (cos 2 9 + i sin 2 9 ) .

We can extend the idea to

z3 z2Z

(r2(cos 2 e + i sin 2 e ))(r(cos e + i sin 0 ))

r3 (cos 3 0 + i sin 3 0 )
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Continuing in this way, we may derive, one after the other,

similar formulas for z
4

, z
5

, z
6

, z
n

, for each natural

number n . The theorem of de Moivre states the general result.

Theorem 12-3a: (de Moivre) If z = r(cos e + i sin 9 )

and n is a natural number, then

z
n = rn (cos h e + i sin n e ) .

Let us turn now to some special instances of this theorem

to see what it has to tell us about the geometry of the complex

plane.

Example 12-3a: Find all positive integral powers of

Solution: We have Iii = 1 and arg i . Thus

i
2
. 1(cos 71- + i sin 70 = -1 + Oi = -1 .

i3 = 1(cos i sin 4T) = 0 - i = .

i
4 . 1(cos 271- + i sin 270 . 1 + Oi . 1 .

From here on the powers repeat: i5 i4i i , 16 . 1412 -1 ,

4 3 i8 i41 = 1 , etc. We can explain this

repetition in geometrical terms by noting that each time the

exponent f.s increased by 1 i
n steps through a quadrant of the

unit circle. We can express these facts compactly by writing

41+14
i
4n

i ,

4n+2
-1 ,

4n+3
-1

where n is 0 or any natural number.
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Fig. 12-3a

Example 12-3b: Let z . cos 1 + i sin 1 . (The angle with

180
radian measure 1 has degree measure --,r , which is'approxi-

matelY 57.3 degrees.) Plot the first ten powers of z . Which

quadrant contains the point represented by z1 00

Solution: Since

z = cos 1 + i sin 1 , de Moivrels Theorem gives

zP . cos n + i sin n , n = 1, 2, 3, ...

These numbers all have absolute value 1 and hence represent

points on the unit circle. The length of arc along the circle

between successive powers of z is 1 unit. To determine the

quadrant containing z1 00 we may first determine how many complete.
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circuits occur as n steps from 0 to 100 . Dividing 100 by

2r we obtain 15.915... . Thus zn steps through 15 complete

'revolutions and over -2- of another as n steps from 0 to 100.14
00Therefore, zi represents a point in the fourth quadrant.

Example 12-3c: Calculate and plot the first five powers of

z = 1 + ijg .

and

Solution: Here Iz1 = 47475 . 2 , arg z = . So

z = 2(cos + . 1 +

z2 4(cos + i sin 4) . 4(- + 2 4.

z3 = 8(cos r + i sin r) = 8(-1 + 0 ) = - 8 .

z = 16(cos + i sin 7r) . lok_ - ) -8 - 81.11t,
kr kr. e, 1

z5 = 32(cos i sin 4) . 32(. -

253
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Using the theorem of de Moivre (Theorem 12-3a) and the

formulas

'(a + b)2 = a
2
+ 2ab + b

2

(a + b)3 = a
3
+ 3a2b 3ab2 + b3

(a + b)4 = ak + 4a3b + 6a2b2 + kab3 + 134

we may derive an endless list of identities of the following kind:

2 51
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12-3a cos 2 9 = (cos 9)2 - (sine )2 ,

12-3b sin 2 9 = 2(cos 9 ) sin 9 ,

12-3c (:)s 3 9 . (cos 9)3 3 cos 9 (sin 9 )2 ,

12-3d sin 3 9 3(cos 9)2 sin 9 - (sin 9)3 ,

12-3e cos 4 e = 8(cos e )14. - 8(cos e )2 + 1. ,

12-3f sin 4 9 = 8(cos 9 )3 sin 9 - 4(cos 9) sin 9 ,

and corresponding formulas for cos 5 9 , sin 5 9 , cos 6 9 ,

sin 6 e , , cos n 9 , sin n 9 , where n is any natural

number. We call such identities multiplication formulas.

We may prove the identities 12-3c and 12-3d as follows:

cos 3 0 + i sin 3 e = (cos 9 + i sin 9 )3

= (cos 9 )3 + 3(cos 9 )2 (i sin 9 )

+ 3(cos 6 )(i sin 9)2 I- (i sin 9)3

((cos 9)3 - 3(cos 9 )(sin 9)2)

i(3(cos 6)2 sin 9 - (sin 9)3) ,

and, equating real and imaginary parts,

cos 39 = (cos 9 )3 - 3 cos 9 (sin 9)2

sin 3e = 3(cos 03)2 sin 9 - (sin 9)3 .

We leave the proofs of the other multiplication formulas as an

exercise.

Exercises 12_3

In each of the exercises 1 through 5,

. (a) Find Izi , arg z , and express z in polar fohn.

(b) Using the polar form found in Step (a), calculate

z , z z

2 54
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(c) Check the results obtained in Step (b) by calculating

z2 z3, z4 using the standard form.

(d) Show in a diagram each of the points 1 , z z2 z3, z4.

1. z 1 + .

2.
2

3. z

4. z . 3 + 4i .

_l-iJ

6. Deduce de Moivrets ,heorem for negative integral exponents

*from the version stated in the text for exponents which are

natural numbers.

7. Prove the multiplication formulas 12-3a, 12-3b, 12-3e, 12-3f.

12-4. Square Roots.

The theorem of de Moivre in Section 12-3 provides a compact

formula for any integral power of a non-zero complex number:

If z = r(cos e + i sine.) > 0 , and

n is any integer, then zn r
n (cos n e + i sin h e ) .

In Sections 12-4 and 12-6, we consider the converse problem:

Given a complex number z and a natural number

n , to find all comnlex numbers w satisfying

the equation wn z .

Section 12-4 is devoted to the case n . 2 . Section 12-6 contains

the general theorems.

We recall that every non-zero real number has two square

roots. IV x is a positive real number, its square roots are
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real; we have denoted them by 06 and -ITE(V)T. being the one

which is positive, the negative one). In Chapter 5, we

extended this notation to cover square roots of negative real

numbers. Thus for .x < 0 ,

15E = 11177 , .15E fFic .

Let us consider the equation

2w = z

where z is a given non-zero complex number (which we may suppose

is not real). We are interested in the solution set of this

equation. Let us assume that the solution set is not empty and

write

w = Iw1 (cos 0 + i sin 0)

for one of its elements. If z = 1zI (cos e i sine ), we have,

by de Moivrels theorem and the assumption w
2 = z ,

1w12 (cos 2 0 + i sin 2 0) . Izi (cos + i sin 0 )

Equating absolute values we have

Iwl2 = izi ;

so that

1w1 =,/17

Note that Iwl is uniquely determined: Iz1 is a positive real

nUmber and Iwl , being a positive real number, is its positive

square root. Knowing 1w1 , we must still find 0 in order to

get w We have

cos 2 0 + i sin 2 0 . cos 0 + i sin e

hence, by Theorem 12-2a,

2 0 . 0 4. 2 kr for some integer k I

or
e 1
p = + kr , for some integer k .

2 5 13
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Now z was given, and if e = arg z then we know e too. Moreover,

0 < e < 2r . If we suppose 0 = arg w , the restriction

0 < 0 < 2r limits the possible values of the integer k . Indeed

k can only be either 0 or 1 ; for, with 0 < e < 2r , we have

10 <-7e<r and if

= ;e+ 0 r, so 0 < 0 = -ie<r< 2r,

= e + 1 ir , so 0 < 0 = e + 7T < 7T + 7T = 27!

but if

k 0: 0

k = 1: 0

k < -1: 0

k > 2: 0

. e + kr < 9 - r < r - r 0 ,

1 1
= 7e + kr > e + 2r > 2r .

We therefore find precisely two candidates for elements of

the solution set of the equation

2
w = z , z given, not zero.

.1 1
They are wo (cosk7 e + o r) + i sin(7e + 0 r)]

w . ,(177 (cos(7 e + 1 r) + I sin(7 e + 1 r)] .

The question still remains whether or not the solution set is

empty. As a matter of fact it is not, and both of our

candidates are members of it. To see this we have to show that

they satisfy the equation. We use de Moivrefs theorem:

w02 = vri-r [cos(; e + 0 7r) sin(; e + 0 r)])2

= 1z1 (cos( e + o 2r) + i sin( e + o 2r))

= IzI (cos e + i sin e)

= z ;
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(1 /1and w
1
2
. L/TET (cosv ffe + 1 r) + sink7 e + 1 r)J3

Izi (cos( e + 1 2r) + i sin( e + 1 2r))

. Izi (cos e + i sin e)
= Z .

These conclusions are summarized in the following theorem.

Theorem 12-4a: The solution set of the equation

2
w = z ,

where z is a given non-zero complex number, is

(w w
0 ' 1 '

where

wo = jrzT (cos(. e + 0 r) + i sin(. e + 0 71-,)

wl =JfT (cos(-3, e + 1 r) + i sin4 e + 1 70;

and e = arg z .

Three observations:

1. If z happens to be real, this theorem agrees with the

results in Chapters 1 and 5. If z > 0 , then IzI = z and

arg z = 0 , so that

w
0

(cos(0 + 0 r) + i sin(0 + 0 71-)]

wl =017 (cos(0 + 1 r) + i sin(0 + 1 70] =

If z < 0 , then lz1 = -z and arg z = r , so that

wo .,/rET (cos(- r + 0 r) + i sin(- r + .0 r)] =,/TET (i) =ff

wl =,/rET (cos(; r 1 r) + j sin(; r + 1 r)] (-i) =-4/2
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2. The roots w0
w
1

are additive inverses of each other:

wl ../pr(cos(.; e + r) + i sin(. e + r)]

friT [. cos(-; - i sin(-; ) ]

w0

(However, it would not be correct to say that one

of them has to be negative. Why?)

3. If z 0 , the solution set contains only one element.

That element is 0 , for w2 . 0 if and only if w = 0 .

,Example 12-4a: Find the square roots of i .

Solution: Since Iii = 1 and arg i = 2rf , the theorem give

/r 1 +
wo cos(y + 0 r) + sink7 + 0 r) = ,

wl = cos(* + 1 . r) + i. sin($ + 1 r) - -1 1
40er

Check:
fl + iN2 1 + 2i + i2 2i ,

1/472-7-1 -----7--
(-1 - i)2 (_1)2 (1 + i)2

.

Fig. 12-4a

2 5
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Note that 2 arg wo = 2q) = ir7= arg i ,

2 arg 141 . 2(4) .57.1 . 2r + 27r + arg i .

12 + 51Example 12-4b: Find the square roots of .

Solution: Let

z = then;
, 13Izi = -F and the polar form of z is

13/12 + 5iN 13/= 7-kcos e + i sin e ) .

12Since cos 0 . > 0 and sfn 0 > 0 , e measures an angle

in the first quadrant. W2 may get an estimate of 9 by consulting

a table of cosines or sines. Dividing this estimate by two we

would have an estimate for the argument of wo . Re-entering the

0table we could get estimates for cos -el and sin 7 and using

them we could obtain an approkimation to wo and hence also an

approximation to wl = - wo . The fact of the matter is that we

need not settle for such approximations to square roots. We can

calculate them exactly! For this purpose we use the "half-angle"

formulas of Chapter 10.

0 + cos e e cos 0
cos -7 . sin _

-
2

(Recall that the choice of signs in these formulas is determined

by the quadrant containing -S .) Returning to our example

12 + 5i 0e arg lies in the first quadrant; hence is also in

0 0the first quadrant. Thus cos and sin 7 are both positive.

We get

sin
2

- cos e
2

2
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Hence

wo =\/-V. (cos + i sin 10

fir:
3 (5±-1) in polar form,

=\

5 i= + 7 in utandard form.

12 + 5i 5 + 5 +The two square roots of are therefore and
2 2

Exercises 12-4

In each of Exercises 1, , 6 find the square roots of the

given complex number z . Check your answers by squaring. Plot

z and its square roots in an Argand diagram.

1. z = 4 4 z =173- .

2. z = 2 + 2i . 5. z = 3 + .

3. z = -9 . 6. z = ./F+ iI.
7. Let wk .jrz-T 1ccsi2, i k7) + i sin(. e + kw)]. SAOW that

w2k w0 w2k+1 = wl for any natural number k .

12-5. Quadratic Equations with Compla Coefficients.

We announced in Chapter 5, Section 5-9, that each quadratic

equation with complex coefficients has complex roots. In this

section we prove that this is the case.

12-5a

Consider the equation

Az
2
+ Bz + C = 0 ,

where A, B, C are given complex numbers (some or all of which may

be real), and A 0 Completing the square, we have

12-5b 13 \2 B
2
- 4AC

=
4A

(sec. 12-5]
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In Chapter 5, where A, B, C were real, the right-hand member of

Equation 12-5b was a real number. In the present case, it is a

complex number (perhaps real, perhaps not). Let us write

17. B
2

- 4AC

and

w = z 4. Tr .

Then Equation 12-5b becomes

12-5c

There are two cases: (1) E = 0 , and (2) E 0 . If E = 0,

which means B
2
- 4AC . 0 , the solution set of Equation 12-5c is

the set (0) . Since z = - a w , the solution set of Equations

12-5a and 12-5b is the set (- a.) . Thus in Case (1),

B2 - 4AC . 0 , Equation 12-5a has just one solution, - .

%

In Case (2), B
2
- 4AC 0 , Equation 12-5c has two solutions,

say wo and ;41 . We know, however, from Section 12-4, that

wl = - wo . Thus we may write. (wo , - wo) for the solution

set of Equation 12-5c. The solution set of Equation 12-5a is then

4.A3. w0 wo)

w
0

ibeng one of the solutions of

w
2

E B2 - 4AC
= =

4A

We state these results as a theorem.

2t33
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The Orem 12-5a: The solution set of the equation

Az
2+Bz+C.0

, A,
is (- .70) if B2 - 4AC . 0 ; if B2 - 4AC 0 , the solution

set is

(- 4. WO w0)

where
.wo

is either of the solutions of the equation

2 B2 - 4AC
w .

Example 12-a: Solve z2 - (2 + + 4i = 0 .

Solution: Here

A = 1 B -(2

-16i = -12 , E -3 . Let

zl + wo

+ 4i) , C = 4i , B2 - 4AC . 4(1 + 2i)2

; then

1 + 2i + .11. 1 + (2 +.113)i

z2 - wo . 1 + 2i ./1" = 1 + (2 -

Example 12-5b: Solve z2 + (1 + i)z + i = 0 .

Solution: Here

A . 1 , B 1 + i , B2 - 4AC . (1 + i)2 - 4i . 2i - 4i

= 2i , E - 4;.(cos i sin 4)

Hence w
°
1
lF
(cos i sin -1:71) . 1 4. , and

ve

B . _ 1 + 1 -
- .r

1 + 1 -
z2 -1 .

Example. 12-5c: Solve the equation

z
2 + (1 - 5i)z - (12 + 5i) = 0 .

(see. 12-5)
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Solution: Here

A . 1 , B = 1 - 51 ,

+ 4(12 + 51) . 24 + 101 ,

12
E -

C = -12 _ 5i B2 - 4AC . (1 - 5i)2
+ a

in Example 12-4b, we

ioun0 :tat the solutions of w
2 12 +

are 5 + i .

5 +Tak.g wo , we have

-1 + 5 5 +
+ wo

1

+ 2 3i '

-
z2 1 + 51 5 + 4. 2i

(Compare with Section 5-9 pf Chapter 5, where this quadratic
equation was mentioned.)

Exercises 12-5

Solve the following equations:

1. z
2
- iz + 2 = 0 . 4. z

2
- (2 + 21)z + 21 . 0

2. iz2 + (1 - 1)z - 1 . 0 . 5. z3 + 21z2 + 3iz = 0 .

3. z2 - 21z - 1 . 0 . 6. zil + 11./T iz2 - 8 = o .

.

*7. z - iz
2
+ 1 - 31 . 0 . (Use half-angle formulas to obtain

z
2

, tables to get approximations for z .)

8. (z3 iz2)
(1 + 2i)(z2 - iz) - (iz + 1) . 0 .

12-6. Roots of Order n.

In Section 12-4 we discussed the solution of the equation
w
2
. z , where z is a given complex number. In this section we

consider the equation wn = z , where z is a given complex

number and n is a natural number. First we consider the case
n .= 3 , and later we extend our results to an arbitrary natural

number n .

ti I
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For z = 0 , the equation wn = z has only one solution,

which is 0 . (Why?) We shall find that there are n distinct

roots when z ?? 0 .

Cube roots.

Consider the equation

12-6a
3w = z ,

where z is given. Suppose z 0 We proceed as we did in

Section 12-4, when we discussed the equation w2 = z . If

w = Iwl (cos 0 + i sin 0)

is in the solution set of Equation 12-6a, then

IwI3 (cos 3 0 + i sin 3 0) = Izl (cos e + i sin e)

so 1w13 Izi , cos 3 0 + i sin 3 0 . cos e + i sine;

and lwl = 3(r-rz , 3 0 = e + k 2r , for some integer k

or lwl = 31/17T y 0 = -3S-e+k 431-r- ,kE I.

Note that 3vTIT is the (real) cube root of the positive

real number IzI ; it is therefore positive. We propose to show

that, if 0 < e < 2r , we have 0 < 0 < 2r if and only if

k = 0, 1, 2. (Compare this to the analogous situation in

Section 12-4.) Indeed, for

,

k = 0:

k = 1:

k = 2:

0

0

0

=

.

1

1

e so o < 0

2r
e 0

<

<

<

< 2r

2
0 < sr +

2
0 < 77r +

,

2

47 1.

4

2r

<

.

27+ -T. , so

4 71.
so 0e + -3 - , -s- =

265
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But if

and if

k > 3:

k < -1:

0 =

d
)0=

9

17

+ 3412L

2kr 2r 2r+ --s- < -s- - -s- =0.

As with square roots de Moivrels theorem shows that each.
_

of the numbers

wo = 3.frzT [cos4 e + o . + i sin(710 + 0 41)]

12-6b w
1
= 34-zi [cos e + 1 . + i sin4 9 4. 1 4)]

w2 = VriT (cos4 8 + 2 =;71) + i sin4 e + 2 4)]

really is a member of the solution set. We summarize these
results as a theorem.

Theorem 12-6a: The 'solution set of the equation

3W = Z

where z is a given non-zero complex number, is

(w w w
0 ' 1 ' 2 '

where

wo 3IPT [cos(-3j.e + 0 4) + i sin4 e + 0

= 3i/FT [cos(-33". 0 + 1 + i sinq e + 1

112 = 34-if [cos(4 Ei + 2 + i sin4 e + 2 .

and e arg z .

26(3
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Example 12-6a: Find the cube roots of 1 = 1 + 0 .

Solution: Here lz 1 and arg z = 0 . Our formulas give
_s_27r)

w - cos(0 + 0 4r-) + 1,sin(0 + 0
0

= cos 0 + 1 sin 0 = 1 ;

2.7)
cos(0 + 1 -F2v) + I sin(0 + 1. -1-

211- 271- -1 +
= cos -s- + sin -s- _

27r, 2.7)
w2 cos(0 + 2 + I sin(0 + 2

r 4r -1 i./7.
= cos -3.- + i sin -As-

Fig. 12-6a

Check: 13 = 1 ,

(-1 ±2 1,1'1)3 ((_1)3 3(± 3(± 47)2 (± vr,$)3]

= (-1 + 9 + i(± 3 A/7 ; 31)] = 1 .

There is a very important connection between the results

obtained in Example 12-6a and the Formula 12-6b. Let us give

names to the special numbers
- 1 i

1, 2 2

the three cube roots of 1. If we put

ai -l+if
2
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then 2 (-1 + 117 2 1
2

) - 7(1 - 21 sir- 3)

1
= 41-2 - 21 ,.(5) -1 -

2

andu12 is the other non-real complex cube root of 1 . The three
cube roots of 1 are, therefore,a),44/2 3

sinceby = 1 .

The connection between the cube roots of 1 and the cube roots of

any complex number z is given in the following theorem.

Theorem 12-6b: If z is not zero and w is any one__
solution of the equation w

3
. z , then the other two solutions

are ww and w2
w .

We give two proofs of Theorem 12-6b. The first proof,

which involves less computation, accomplishes all that is

actually required. The second proof exhibits explicitly the

relationship between the Formulas 12-6b and the much more compact

expressions w, eivw,

First Proof. Our first assertion is that the three numbers

1 Jai, are disttnct. This is evident on the grounds that.no

pair ofthem have the same real and imaginary parts. Moreover,

it ia impossible for any two of the numbers w ,44/w ,e,a
2
w to be

equal if w3 = z 0 . For, on the contrary, we should have

W = 41.1 W

(say) or 1 . eAV since ,w cannot bo zero. This contradicts the

fact that 1 and W are distinct. We know then, that

and w 2
w are three different numbers. We propose to

each of these numbers satisfies the equation w3 = z
w-

are three different numbers they must be the three elements of the

solution jet, for that set contains only three elements altogether.

w , w ,

prove that

Since they

268
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By hypothesis w3 = z . Now, in addition,

and

(a/ w)3 = a/3w3 = w3 = z , for a./
3 . 1%

(4/2w)3 eoPw3 12w3 w3

so w and a/
2w also satisfy the equation.

Second Proof; We show that

a/ wo = wl and a/2w0 = w2 ,

and leave the other possibilities as an exercise for the student.

Recall that

1 1
wo = 31rzl. (cos(7 + i sin(7 )) ,

2r 2r 4r kr/ = cos -T.+ i sin , a/
2
= cos s- + i sin 3-

We have, then,

4f, Wo = VrET (cos(23: 9) + i sin(;. 9)] (cos 471. + i sin 4)

[cos(19+ + i sin4 e +

= wi ;

4)2wo 3.11.71 [cos(A. e ) + i sin( e)) (cos 14: + i sin 4-)

= Vri-T [cos (-is% 9 + -s-

= "2 '

kr) sin4 .4)3

This theorem tells us a great deal about the geometry of cube

roots. It is the analogue for n = 3 of the

when n = 2 . We know that the cube roots of

.circle with center at 0 and radius

one we call w
0 '

has argument one-third of the

269
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Since the other two are caw and et/
2
w

'

we can see at once that
0 0

the three cube roots are equally spaced around this circle. This

is clear when z = 1 and the roots are 1 , , a/2 . For any

1 1other value of z we have merely to add 7 e , or arg

2the arguments of 1 , 4f) , A,0 get the arguments of wo wl

w2 , respectively. Since we add the same quantity to each of these

arguments we turn the whole configuration around 0 by the

amount added.

Flg. 12 -6b

Roots of order n .

We now extend the results obtained for square roots and cube

roots. We give theorems for the roots of the equation

12-6c
n

w , z / 0 ,

where n is any natural number. The student will note that sub-

stituting 2 and 3 for n in the theorems and their Proofs

'270
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gives us the theorems obtained for square roots and cube roots as

well as their proofs. Thus there is no new idea in the remainder

of this section; we merely carry over what we did before to the

general case.

Theorem 12-6c: If n is a natural number and z is a

given non-zero complex number, the solution set of the equation

wn = z ,

is two , 141 wn_11 , where

w
k

[cos(1 e + k -21) + a. sin(2-- 9 + k 4:1 ) ,

k 0 , 1 , , n - 1 , and 9 = arg z .

Proof: By de Moivrels theorem, each of the numbers

w
k '

k = 0 , 1 , , n - 1 , belongs to the solution set since

1 2r 1 .n
z (cos( 9 k ---) + i

2r
9 + k ---)])

n

nk

IzI [cos( 9 + k 2r) + i sin( 8 + k 2r)]

IzI (cos 9 + i sin 9 )

= Z

Moreover, they'are all distinct for no two have the same argument.

On the other hand, suppose w belongs to the solution set and

that 0 = arg w .
We must show that each element of the solution

set is one of the numbers w We a
0 '

w
1 ' '

ssime,
'111-1

then, that wn z . This implies

IwIn = IzI and n0 = 9 + k 2r ,

for some integerk . Thus

Iw I = nirEr and 0 --: n1 9 + k .

2 7
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Now 0 < 9 < 2r and 0 <k<n-1 give

271
2r 2r0 < 0 . + k < x n'= (k 1)-ir < n = irk

while 0 < 9 < 2r and k

0 = 9 +

MOM

n
0 + n 22-r > 2r ,

and 0 < 9 < 2r and k < -1 give

2r 2r 2r
n < n n o

This theorem shows that each non-zero complex number z has

n distinct complex n
th

roots, where n is any natural number.

The complex number 0 has only me nth root for each natural

number n It is 0 .

The n complex nth roots of the number 1 are called the

n
th

roots of unity. Let

1 . 1w cos( 0 + 1 27
--) sin( 0 + 1

cos(221) + i sin(32E1r. '

2r)

so that cd is a particular one of the n
th

roots of unity.

De Moivrels theorem shows us that the n - 1 other n
th roots of

unity are

since

2 3
, t.e.1 , 0.0

2r 2r k
40 = [cos( sin(--)]

2r
cos(k

2r
sin(k IT-)

thus for k = 1 , 2 , 3 , , n we obtain precisely the same

roots given by Theorem 12-6c on putting z 1 , 9 = 0 .

272
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The next theorem generalizes a result we found in the cases

n . 2 , 3

Theorem 12-6d: If w is any one of the roots of the

equation wn.. z where z 0 , then the solution set of the

equation may be described as

(w Ai2w ..
2r

whereGv = cos(12) i
,

n-1
w) ,

Proof: No two of the numbers 1 , A/ , Aj
2

, ... ,46/
n-1

can be equal because their arguments are, respectively, 0 ,

2r 2r
---2r 2

2r
---- 3

' '
(n - 1) and no two of these

n ' n ' n n

arguments are equal. Hence no two of the numbers

12-6d 1 w '

2 n-1
,G6" w , AV w

can be equal; for otherwise w would have to be zero, which is

impossible. We know, by Theorem 12-6c, that Equation 12-6c has

exactly n roots; we complete the proof by showing that each of

the numbers 12-6d is a solution of wn = z . But this is easy,

since
(147kw)n n)kwn ,k

for any integer k .

This theorem extends to the general case the resultswe found

for cases n . 2 , 3 on the location of the roots. All the rootb

lie on the circle with center 0 and radius nITZT. If
1

e = arg z , one of these roots has argument e ; the other

roots are located at equal distances around the circle. For

n > 2 , the n roots, therefore, represent the vertices of a

regular polygon of n sides inscribed in the circle. It there-

fore suffices to locate one of them--say wo ; after this the

positions of all the others are determined.

[sec. 12-6]
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Exercises 12-6

In each of Exercises 1, , 7 find the cube roots of the
given complex numbers.

1. z . 2

2. z . -2

3. z 1

4. z = .

5. z - 1 .

6. z . 3 + 41. . (Use tables to obtain approximations to the cube

rootS.)

*7. z = 1 + i . (Do not use tables.)

3.. Solve the equations

(a) x = - 1 .

(b) x6.- 1 0 .

(c) x3 + (6 + 6N/Ti) = 0 .

9. Using tables find the 4th roots of

16(cOs 164° + i sin 164°)

10. Show that the sum of the n n
th

roots of unity is zero.

*11. Find n complex roots of each of the following equations:

(a) z
n

z
n-1 + zn-2 + z

3 + z
2
+ z + 1 . 0 ,

where n is a natural number;

(b) zn - zn-1 + zn-2 - - z 3 + z2 - z + 1 . 0 ,

where n is an even natural number.

Section 12-7. Miscellaneous Exercises

2
1. Prove that La = to

2 and w2 = uul, where Wi and ud2
1 2

are the two non-real cube roots of unity.

2. Express in polar form:

(a) -3 +4 i. (c) cos 217° - i sin 217°.

. (b) -2 - 2i . (d) 0.5592 - 0.8290 1.

[sec. ].2-7]
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(e) :).1he conjugate of r(cos 9 + i sin 9 ) .

(017(- cos 25° Li:51 i sin 25° 351) .

(g).' cos 182° + I sin 358° .

(131) cos 23° + i sii; 32° . (Use tables.)

3. EXpress in polar form and perform the indicated operations:
A

,4(a) (-1 + i)(1 .,/"T 1) .

a (131 3 -17i,

5 - 51

cos 137° 4. i sin 763° cos 317° + i sin 223°

cos(-30°) - i sin 3300

(d) (1 i)2R
(1 -,171)-'

(e) (cos 100 + i sin 15°)(cos 15° - i sin 10°) .

2 3
4. Simplify the product 1 ea

(a) when n is even.

(b) when n is odd.

5. Let z be a complex number and 4.1) a non-real cube root of

.2
unity. Show that the points z ,a)z "0 z form an equi-

lateral triangle on the Argand diagram.

6. Express as a function of z and n .the length of one side

of a regular n-dIded polygon inscribed in a circle cr

radius IzI , where z is a complex number.

7. Find all the roots of each of the:following equations:

(a) k - 2i = 0..

(b) 86 + = 0 .

2 7 ;)
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Chapter 12

APPENDIX

1 1 1

*12-7. The FUnctions z ,

We have seen that if z is any non-zero complex number,

e = arg z , and m is any integer, then

zm 1z im [cos(m e ) + i sin(m )3 .

In Section 12-6 we studied the equation wn = z , where z is a

given non-zero complex number and n is a given natural number;

we found thai the solution set consists of the n distinct numbers

wk VIET-rcos4 e + k . -1.1) + sin4 a 4. k . 4)]

k = 0 , 1 , 2 , 3 , , n 1 .

The results in Chapter 9 tell us that if a is a positive

real number, there is a unique positive real number b such that

b
n . a . We write, in this case, b a

l/n
. Moreover

(al/n)m = (am)l/n , entitling us to write am/n tc denote either

of these numbers. We also know from Chapter 9 that-the familiar

"laws" of integral exponents carry over entirely to these

"fractional" exponents.

In this section we propose to consider the question of

"fractional" powers of complex numbers. It should be apparent

at the outset that our task is much more involved in the complex

case than it was in the real case--if only because we have n

roots of order n here instead of just one.
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The first step in any study of rational powers is to give a

meaning to expressions of the form zl/n We cannot simply say,

as we could in the real case, that it is the solution of the

equation wn z ; for there are too many solutions (more than 1

if n > 1) . To put the matter rather bluntly, the relation

w
n = z does not define w as a function of z . In order to

construct some sort of function in this context, we are therefore

forced to shift our point of view. We have a correspondence here,

but in order to obtain a function we must first settle the

questions of what are its domain and range.

Let us take the simplest case first; we therefore consider

the equation w
2 . z We hope eventually to find how w can be

considered to depend on z . In order to understand this relation,

however, we shall first turn it around and investigate in some

detail how z = w
2 depends on w . By shifting our attention to

this more familiar situation we can learn much that will help us

in disaisaing the more complicated "inverse" relation. We now

have a function z = w
2 to work with. For our study of this

function let us draw two pictures.

Imaginary

Real

Imaginary

Z NI
2

Fig. 12-7a

277
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In the first we shall plot the complex number w and in the

second we shall plot z . The functional relationship between

these variables can be described by determining which points in

our "z-plane" correspond to given points in our nw-plane."

Let us trace some of the pairs in this correspondence. For

instance, if w = 1 , the corresponding point in the z-plane is 1 .

If w is real and greater than 1 (on the "real" axis in the

w-plane to the right of 1), so is its "image" in the z-plane;

indeed it is further away from 1 since IzI > Iwl if

z = w
2

and Iwl > 1 The image of any point in the w-plane

outside of the unit circle lies outside the unit circle in the

z-plane for IzI > Iwl > 1 if Iwl > 1 Also each point in

thee w-plane and inside the unit circle corresponds to a point

inside the unit circle of the z-plane. Finally each point on the

unit circle of the w-plane corresponds to a point on the unit

circle of the z-plane. Our discussion of the correspondence has

taken into account only the absolute values of w and z so far,

and may be considered the geometrical version of the statements:

If z = w
2

, then IzI > Iwl for Iwl > 1 ,

IzI = Iwl for Iwl . 1 ,

IzI < Iwl for Iwl < 1

To complete our picture, we consider arg w and arg z .

We may do this by tracing the image in the z-plane of a point

moving around the unit circle of the w-plane. The image point

moves meantime on the unit'circle of the z-plane. Note that as

w makes the trip through the firat quadrant on its unit circle,

going from 1 to i , z manages to travel through both the first

an4 'Second quadrants, going all the way from 1 through i and

on to -I (Figure 12-7b) .

2 7 8
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= W
2

Fig. 12-7b

Let w continue, patsing through the second quadrant on its

unit circle. When this happens, z shoots on around its unit

circle completing a full circuit (Figure l2-7c) .

2
Z W

Co.)
Fig. l2-7c

What happens next is a good question. It depends on how you

choose to describe it. If w keeps going, passing through the

third quadrant, z will shoot along through its first and

neCond quadrants again. And finally as w passes through its

(sec. 12-7)
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fourwl quadrant, z will race through its third and fourth

quadrants; and, lapping w , they will come into their respective

points 1 together. This is the trouble. If z went through

each of the points on its unit circle exactly once as w makes

its full circuit there would be no problem; there would be just

one value of w corresponding to each of these values of z ,

and we would have a function w f(z) to talk about. As it is

we have not yet got such a function since each z gives rise to

a pair of wiTs .

We can get around this difficulty by a trick--at least it

was a trick when it 'was introduced about a hundred years ago.

But no trick can remain a trick for a hundred years--certainly

not one as good as this. It has become quite a respectable method

since it was introduced and has come to be considered one of the

most important methods for treating questions of this sort.

Our trouble amounts to the fact that we have to use the

points in the z-plane twice to describe a tour such as the one

considered. Suppose then that we use two z "planes" going

through each of them just once. Can we do this somehow? The

famov. German mathematician Bernhard Riemann f6und that we can,

provided we are sufficiently ingenious about it. He visualized

the "rwo" z "planes" arranged as follows: We "cut" each of them

along the positive real axis and then "glue" them together in

criss-cross fashion as shown (Figure 12-7d). The resulting

configuration is an example of what we call a Riemann Surface.

Fig. 12-7d

[sec. 12-7)
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Our object in all this is to obtain w as a function of z

if w
2
= z Can we do it now? Again let w traverse its unit

circle. This time, however, let us imagine z as moving on the

Riemann Surface. Very well, when w is 1 , z is 1 . As w

moves through the first quadrant on its unit circle we imagine z

as moving halfway around its un :,A. circle in one of the sheets of

its Riemann Surface. As w passes through its second quadrant,

z comes completely around and returns to 1 . Now--here is the

trick--as w goes into its third quadrant, z will pass over to

its other sheet and go through two quadrants of the unit circle on

that sheet. (Remember the sheets cross each other along the

positive real axis.) When w finishes its circuit, so does z

But, by introducing this way of looking at the matter z has

gone through no point twice, except that it ends at 1 where it

starts. This statement must be interpreted with care. There

would appear to be a duplication since our "gluing" seems to

identify the two points 1 of the two sheets. Let us imagine

that z = 11 (in the first sheet) for w = 1 , z = 12 (in the

second sheet) for w = -1 , and z 11 when w = 1 again.

We need all the points of each sheet--we cannot afford to throw

any away by allowing some points to be in both sheets. We look

on these points as distinct although it is hard to make a con-

vincing drawing; the pieces are connected cross-wise but we

think of them as not touching anywhere other than 0 .

Hence, corresponding to each point on the unit "circle" in

the Riemann Surface, there is one and only one point in the

w-plane. Here is our function! Its domain is the two-sheeted

Riemann Surface, its range is the w-plane. This function ist

denoted by w = z1/2

231
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The same theme, with variations, runs through the discussions

of w
n

z for other natural number va1ue.3 of n .

Thus for n = 3 , the function z = w3 opens each of the

"fans"

0 = 0 < -;11. < 0 < 11:1- < 0 < 2v

in the sense the images in the z w3

plane of the pointa in each of them

fill out the z-plane.

Thus the z-plane is covered three times by the images of

points in the w-plane. In this case we replace the z-plane with

a three-sheeted Riemann Surface shown in Figure 12-7e. As before,

we then obtain a function w = z1/3 whose domain is this surface

and whose range is the w-plane.

The idea is analagous for a general n . The function

l/nw = z has an n-sheeted Riemann Surface for its domain; its

range, as before, is the w-plane.

Fig. 12-7e

2 3 2
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Chapter 13

SEQUENCES AND SERIES

13-1. Introduction.

It is a common expurience to be confronted with a set of

numbers arranged in some order. The order and arrangement may be

given us, or we may have to discover a law for it from some data.

For example, the milkman comes every other day. Re came on

July 17; will he come on August 12? We might consider that we are

given the set of dates

17, 19, 21, ...

arranged from left to right in the order of increasing time. We

wish to know how to continue the set. In this simple case the

scheme is triVial; we have

17, 19, 21, ..., 29, 31, 2, 4, ..., 28, 30, ...,

and the answer to the original question is yes. Any such ordered

arrangement of a set of numbers is called a sequence.

Definition 13-1a: A finite sequence of n terms is a

function a whose domain is the set of numbers (1, 2, ..., n) .

The range is then the set (a(1), a(), a(n)) , usually

written (al, a2, anl . The elements of the range are called

the terms of the sequence.

An infinite sequence is a function a whose domain is the

.set (1,2,3,...,n,...) of all positive integers. The range of a

is then the set (a(1), a(2), a(3), a(n), ...) , usually

written (al, a2, a3, ..., an, ...) . The element an of the

range is called the n
th

term of the sequence.

283
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The terms of a finite or infinite sequence may be arbitrary

course they will be real orobjects of any kind, but

complex numbers.

Example 13-1a:

in this

17(a) 1, 2, 3,

(b) 17,.-23, 15, 5280

(c) 17, 12, 7, 2, -3, -8

(d) 3, 6, 9, 12, ...

(e) 1- 1-72, 73,

(0 sin 71-, sin , sin 5 ,

The first three sequences are finite; the last three are

infinite. In all but (b) a definite law governing the formation

of successive terms is easily discernible.

Suppose now that in the sequences above we replace the commas

between successive terms with plus signs. The resulting expressions

are called series. (The noun "series" is both singular and plural.)

Definition 13-1b: Let (a
1,

a
2'

a
n

) be a given

finite sequence of real or complex numbers; then the indicated sum

a
1

+ a
2

+ + a
n

is called a finite series. The numbers a
1,

a
2'

.. , a
n

are

called the terms of the series.

Let (a
1,

a
2'

.

'

a
n'

... ? be a given infinite sequence of

real or complex numbers. Then the indicated sum

a
1

a
2

+ + a
n

+

is called an infinite series. The number an is called the nth

term of the infinite series. f.

2 3 1-

[sec. 13-1]
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According to the definition, the expression

1 + 4 + 7 + 10 + 13 + 16

is an example of a series. It is a finite series having six terms.

Note that the operation of addition suggested by the plus signs is

not actually involved in the definition. Of course, we shall

eventually want to perform the addition in order to find the sum

of a series, but it is wrong to confuse a series with its sum.

Example 13-lb:

+ + + . . .
lo

This is an infinite series. Note the plus sign

before the dots. Thiit 10
th term of the series is 1 . 10-9 .

109

The student is warned against referring to the "last tere of an

infinite series; there is none,

Example 13-1c: Find the 11
th term of the infinite series

1 2 + 3 4 + 5 . 6 + 7 . 8 + ,

where the dot between the two integers of each term indicates

multiplication.

Solution: The second factor of each term is evidently twice

the number of the term. Thus,

the 11th term is 21 22 . 462 .

It is frequently desirable to use letters for the terms of a

sequence or a series, and often a subscript is attached to

indicate the number of the term counting from the beginning, or

from some fixed point. Thus, the most general infinite sequence

may be written in the form

13-la a . a a
1. 2' 3' '

and the most general infinite series as

13-lb
al a2 a3

[sec. 13-1]
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The use of dots may turn out to be ambiguous, because the

composition of the sequence (or series), if complicated, may not

be evident from a few initial terms. To avoid this difficufty,

mathematicians frequently write just the general term. This is

the k
th term, starting from any fixed point. Of course, any

letter may be used instead of k ; the letter used is called the

dummy variable. Thus in place of Sequence (13-1a), we use set

notation and write

(13-1c)
co

(ak)
k=1

This symbol means that if we replace k in turn by 1, 2, 3, ...

we will have the Sequence (13-1a), The upper and lower symbcls

appearing outside the braces are called upper and lower indexes.

If a sequence is finite, say with n terms, then the upper index

is n rather than co , and the last term is an : In the case of

an infinite sequence such as (13-1a), there is no last term such as

a because co is not a number. We use co as the upper index
co

in this case simply to indicate that the sequence is infinite.

A similar shorthand notation is used to represent a series.

Since a series is an indicated sum we use what is called

"summation notation" and represent Series (13-1b) by the symbol

03

17. a
k

k=1

The symbol Z is the Greek letter "sigma" which corresponds in

English to the first letter of the word "sum". The indexes mean

the same thing here that they do in the sequence notation. Thus

if a series is finite, say with n terms, we write instead

a
k

.

k=1

3

[sec. 13-1]
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Example 13-1d: Write out the finite series

8

2k
k=5

Solution: To obtain the terms of the series we have only to

substitute the sequence or values 5, 6, 7, 8 for k in the

general term . We get

5 62 + 2

32 + 64

7
2'

+ 128

8
4. 2 ,

+ 256

or

.

Example 13-1e: The following symbol is merely another

notation for the infinite series of Example 13-1c:

k=1

You have only to write out the first four terms to assure

yourself of this. Try it.

We conclude this section by defining the sum of a finite

series.

Definition 13-1.c: The sum Sn
of a f,init- series is the

sum obtained by adding all of its terms.

The subscript n in the symbol Sn for the sum of a finite

series indicates:that n terms are added. By definition,

Sn a, a2 + + an . The symbol

2 ?) 7
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is also used to denote the sum of an infinite series. It should be

emphasized that each of the symbols

a
1
+ a

2
+ + a

n E ak
k=1

has two meanings as follows: each symbol denotes not only the

finite series but also its sum. It will always be clear from the

context which meaning is intended.

It should be observed that Definition 13-1c does not define

the sum of i.n infinite series. We must postpone the statement of

such a definition until the concept of the limit of a sequence

has been introduced in Section 13-4.

Example 13-1f: What is the sum of the folloaing series if

n is odd? If n is even?

k=1

Solution: We obtain the first term of this series by

substituting k=1 for the dummy variable k in the general term

(-1)k . We obtain the second term by substituting k=2, etc.

Thus the series is

-1 + 1 - 1 + 1 + (-1)n .

If n is odd, the sum is -1 ; if n i8 even the sum is 0 .

Exercises 13-1

1. Complete each of the following sequences through 7 terms:

...

(a) -1, -4, -7, -10, ...

(b) 3/4, 6/7, 9/10, 12/13, ...

(c) 17, 2, 217, 4, ...

(d) 2 x 5, 4 x 10, 8 x 20, 16 x 4o,

(e) a,

[sec. 13-1]
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2. In the previous problem find the k
th term of each sequence.

3. Repeat Problem 1 using the abbreviated notation for a

sequence. Thus Part (a) is

(-3k + 2)7
k=1

4. Complete each of the following series through 7 terms:

(a) 7 - 2 + 7 - 2 +

(b) + 0 - 7 + 0 +

(c) a + 2a + 3a + 4e. +

(d) 1 - 2 + 3 - 4 +

5. Find the sum of the first 7 terms of each series in

Problem 4.

6. Write each of the following series using the E notation:

(a) -1 + 1 + 3 + 5 + + 17

(b) 2 - 4 + 8 - 16 + - 256

(c) 1 3 + 2 4 + 3 5 +

(d) (1 + i),+ 1 4. (1 - i) + (1 - 2i) ...

7. WAte all terms for each of the following:

(a)
(k(k + 1))4

2 k= -2

2

(-k
3

)
3

k= -1

3

k(k + 1)
2

k= -3

.2 n
( (-2) )

K= -2

2 3 9
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a. Show by writing out all of the terms that the following

symbols all represent the same series:

(a)

(b )

(c)

2

UTTT '

k. -3

-15

+ 1I
j. -20

19
m - 17
m - 13

m.14

9. Write the nth term of the series

(k2 - 14k) .

k.2

10. Admitting that the sequence

)

k.1

has its first two terms odd numbers, its next two even, etc.,

find the general term of the series

1 + 5 - 9 - 13 + 17 + 21 - 25 - 29 +

11. Show that

(a) c . ak c a
k '

k.1 k=1

(b) c nc

k.1

290
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.(c) (ak + bk) = ak + bk

k.1 k1 k=1

(d) If 1 < m < n

ak = a
k

+ a
k

k.1 k=1 k=m+1

,12. Is it true that

n n

(a) E , U. ...-.

k K
( 'Ek=1 :c=1

(b)
1

k=1 ak =

If n m 1

n-m+1

(c) ak. a
k+m-1

k=m k=1

f)

k)

739

13-2. Arithmetic Sequences and Series.

Certain sequences and series are of such.frequent occurrence

that they have been given special names.

Definition 13-2a: An arithmetic sequence is a sequence in

which the difference obtained by subtracting any term from its

successor is always the same. This difference is called the

common difference of the arithmetic sequence and is designated by

the letter d .

[sec. 13-2]

291



740

An arithmetic sequence is also called an arithmetic progression
and we say that the terms of the sequence are "in arithmetic
progression." The common difference of an arithmetic sequence is
obtained by subtracting any term from its successor. Thus if al,
a2, a3, ak_l, ak, are the terms of an arithmetic
sequence, then

a2 - al = a3 - a2 = = ak ak_l = = d .

Following are examples of arithmetic sequences:
(a) 1, 2, 3,

(b) 17, 12,

(c) 3, 6, 9,

..., 17;

7, 2, -3,

12, ...;

d

-8;

d =

1

d =

3 .

-5 .

The sequence 1, -1, 1, -1, ... is not arithmetid because
the differences between successive terms are alternately -2,2;
this sequence has no common difference.

From Definition 13-2a it follows that if a
1

is the first
term of an arithmetic sequence, then

13-2a

a2 al + d ,

a3 . al + d + d = al + 2d ,

a
n
= al + (n - 1) d .

The last line provides us with an easy formula for finding
the n

th
term of an arithmetic sequence whenever the first term

and the common difference are known. We illustrate an application
of Formula 13-2a by means of an example.

Example 13-2a: If the 2
nd

term of an arithmetic
sequence is 0 and the 9

th
term is 14 , what are the 1

st
and

100th terms?

Solution: Using Formula 13-2a with a
2
. 0 and a

9
. 14

'we see that

9 C.)
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14 . a
1
+ (9 - 1)d ,

and

741

0 . a
1
+ (2 - 1)d .

Whence d 2 , al . -2 , and a100 . 196 .

From the definition of a series given in Section 13-1

(Definition 13-1b) it follows that an arithmetic series is the

indicated sum of the terms of an arithmetic sequence. The most

important arithmetic series is the one whose termi are the

positive integers. The common difference of this series is 1 ,

and the sum S
n

of the first n terms is given by the equation

13-2b S, . 1 + 2 + + (n - 1) + n .

Since the sum S
n

is not affected by the order of addition, we

can reverse the order of the terms on the right side and also

write

13-2c Sn n + (n - 1) + + 2 + 1 .

Adding Equations 13-2b and 13-2c , we obtain

2S
n

(n + 1) + (n + 1) + + (n + 1) + (n + 1) ,

and dividing both members by 2 , we have

n(n + 11
2

making use of the Z notation introduced in Section 13-1, the

last equation can also be written as

, n
2
+ n

k.1

The result we have obtained can be stated as a theorem.
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Theorem 13-2a:

+13-2d 1 + 2 + 3 + + n = k n
2

n
-

k.1

where n is a positive integer.

One could almost have guessed this result. Since the differ-

ence between successive terms is the same, it is reasonable to

suppose that the average term of this series is half the sum of

the first and last terms, or half the sum of the second and next_
to-last, etc. The sum of n terms, each of which has the average

(n + 1) n
2
+ nvalue , is as stated in Equation 13-2d . We2

shall soon see that this is a general rule for all finite arith-

metic series; that is:

Sum . (number of terms) x (average of first and last terms).

Theorem 13-2a may be used to find the sum of any arithmetic

series. The following examples are illustrative.

Example 13-2a. Find the sum of the series

3 + 7 + 11 + 15 + 19 + 23

Solution: Subtracting the first term from each of the six

terms of the series and compensating by adding an equal quantity,

the sum is equal to

6(3) + [(3 - 3) + (7 - 3) +'(11 - 3) + (15 - 3)

+ (19 - 3) + (23 - 3)]

. 6(3) + (0 + 4 + 8 + 12 + 16 + 20)

..6(3) + 4(1 + 2 + 3 + 4 + 5) .

Applying Theorem 13-2a to the expression within paren;l6hesis, we

find that the sum is

2 ,
6(3) +

5

78 .

[sec. 13-2)
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Example 13-2b: Find the sum of 500 terms of the arith-

metic series

4) + + (-1 4)

Solution: To find the sum of this series we need to know
3

the last term. Using Formula 13-2a with al = - and
1

d - , we see that

a500 (- 4) + 499(- -?z.)

Thus the series can be written in the form

[- + 1(- ;)]

+ .3,1] + 499(_ .

Whence we see that the sum is

500(- + (- (1 + 2 + 3 + 499)

2
- 375 - c499) 4

499 = -62750 .

Example 13-2c: If the sum of the first n positive

integers is 190 , what is n ?

n
Solution:

n
2

190

(n - 19)(n + 20) = 0

n 19 .

The solution n . -20 has no meaning in the present context

because n is a positive integer.

Although it is possible to find the sum of any arithmetic

series by employing the scheme used in the preceding examples, it

will be helpful to have formulas that can be applied directly.

We can obtain two useful formulas by applying the method of

Examples 13-2a and 13-2b in the general case. Thus, consider

(sec. 13-23
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the arithmetic series of n terms, having first term al ,

common difference d , and n
th

term [a
1

+ (n - 1)d] :

al + (al + d) + (al + 2d) + + [al + (n - 1)d]

If we let S
n rcresent the sum, then

Sn . nal + [1 + 2 + 3 + + (n - 1)]d

Applying Theorem 13-2a to the quantity within brackets, we have

Sn . nal + (n - 1)2 + - 1)
] d , or2

n(n - 1)d13-2e Sn = nal +
2

Combining terms in the right member of 13-2c we get
2na

1
+ n(n - 1)(1

S
n

_
2

na
1
+ na

1
+ n(n - 1)d

nal + n[al + (n - 1)d]

But by Formula 13-2a , an = al + (n 1)di so

13-2f Sn 41(a1 + an) .

Equations 13-2c and 13-2d give us useful formulas for finding

the sum of any arithmetic series. Which one we use in a given

case depends on what facts we are given. Using these formulas

will greatly simplify the work in Examples 13-2a and 13-2b .

Example 13-2d: Find the sum of the series

16

(k 15)

k.2

2 9
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Solution: Noting that the lower and upper indexes are

respectively 2 and 16 , we see that the series has 15 terms,

Substituting k . 2 and k 16, we find that al = -13 ,

a
1
'5 . 1 . Using Formula 13-2d we get

S
n

= 15(-13 + 1) = -90 .

Note. Occasionally the last line is written as

16

(k - 15) . -90 .

k=2

When mathematicians use the notation in this way, they have

in mind the sum of the series rather than the series itself.

Although we introduced the Z notation as a symbol for a series,

the dual usage of this notation should cause no difficulty,

because it will usually be clear from context which usage is

intended.

Example 13-2e: A body falling from rest in a vacuum falls

approximately 16 ft. the first second and 32 ft. farther in

each succeeding second. How far will it fall in 11 seconds?

In t seconds?

Solution: The series is

16 + 48 + 80 +

Using Formula 13-2e with al . 16 , . 32 , and n . 11 (or t

we see that for 11 terms

11 10 32
S
n

11 16 + - 1936 ;
2

and for t terms

t(t - 1 ) 32 - 16 t
2

.S
n
= 16 t + 2
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Exercises 13-2

1. Determine which of the following series are arithmetic. Find

d and the next three terms for those that are.

(a) 4 + 10 + 16 + 22 +

(b) 5 + 9 + 12 + 18 +

(c) 2.0 + 2.5 +.3.0 + 3.5 +

(d) 2 + 3 2 + 5 2 + 7 2 +

(e) -10 - 6 - 2 + 2 +

2. Find the sum of the series

.16

k=1

3. Find the sum of the series

5

E (2k - 4)

k=0

4. Write the first 5 terms of an arithmetic series in which

the second term is m and the third term is p ,

Write the first five terms of an arithmetic series in which

the second term is m and the fourth term is p .

6 If the third term of an arithmetic sequence is -1 and the

11l6th is 7 , what is the first term?

7 If 2 - n is the nth term of an arithmetic series, write

the first term.

8 Find the indicated term in each of the following series:

(a) 15th term in 3 + 5

(b) llth term in -2 + 1 +

(c) 9th term in + +

9. How many integers are there between 35 and 350 which are

divisible by 23 ?

[sec. 13-21
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4
10: The arithmetic mean between a and b is

a b Find

its value if

(a) a . 5 , b . 65 .

(b) a . -6 , b . 2 .

(c) a = 3 -,/7 , b = 7 +

(d) a = (c + d) 2 , b c 2 - d2 .

11. Take every 5th term from an arithmetic sequence and form a

new sequence. Is the new sequence arithmetic?

1 1
12. If 3 7 and 8 7 are the first and eighth terms of an

arithmetic sequence, find the six terms that should appear

between these two so that all eight terms will be in arith-

metic progression. (The six terms you are asked to find are
1 1

called the six arithmetic means between 3 7 and 8 7.)

13. Find the sum of the following series by using Theorem 13-2a.

(a) 1 4. 2 + 3 + + 10

(b) 1 + 2 + 3 + + 999

(c) -3 - 6 - - 12 - 15

14. On a ship, time is marked by striking one bell at 12:30, two

bells at 1:00, three bells at 1:30, etc. up to a maximum of

8 bells. The sequence of bells then begins anew, and it is

repeated in each successive interval of four hours throughout

the day. How many bells are struck during a day (2)4 hours)?

How many are struck at 1030 p.m.?

15. Find the sum of the series

(ak + b) .

k=1

16. Find n if

1 + 2 + 3 + + n 153 .

[sec. 13-2)
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17. Find a and b if

4

(ak b) . 10

k.0

18. Find the sum of the series

;
4

(ak b) = 1k .

k.1

k , m>0,n>0.
k. -n

Show that the sum is the number of terms multiplied by the

average of the first and last terms. (Here k runs through

all integers from -n to m inclusive.)

19. The digits of a positive integer having three digits are in

arithmetic progression and their sum is 21 . If the digits

are reversed, the new number is 396 more than the original

number. Find the original number.

20. Find formulas for a
1

and S
n when d, n and a

n
are

given.

21. Find x if (3 - x) , .\9.1:E are in arithmetic
progression.

22. The sum of three numbers which are in arithmetic progression

is -3 and their product is 8 Find the numbers.

23. Find the sum of all positive integers less than 300 which
(a) are multiples of 7 ,

(b) end''In 7 .

13-3. Geometric Sequences and Series.

Another very important special sequence is the geometric

sequence.

Definition 13-3a: A geometric sequence is a sequence in

which the ratio of any term to its predecessor is the same for

all terms.
TO 0
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Thus if the first term of a geometric sequence is al and

the common ratio is r , then

a2 = alr ,

a3 = alr
2

,

a . a rn-1 isitive13-3a n 1
, where

integer.

The last line gives us a formula for the nth term. Geometric

sequences are also referred to as geometric progressions, and the

terms of the sequence are said to be "in geometric progression".

From the definition of a series given in Section 13-1

(Definition 13-1b) it follows that a geometric series is the

indicated sum of the terms of a geometric sequence. For the

sequence introduced above we have the geometric series

n-1 n-1

13-3b a
1

4. alr + a1r2 + + a
1
r
n-1 = alrk = a

1
E rk

k=0 k=0

which is finite and has n terms, or the infinite series

13-3c a
1
+ alr + a1r2 + alrk = a

1
E rk .

k=0 k.0

A3 with all infinitj series, (13-3c) has no last term.

Following are examples of geometric series:

(a) 1 + 2 + 4 + 8 + 16 + ; r . 2

(b) - 1 - + 1 + ; r = i .

(c) + + 3 .,/Z + 3 N/E + . . . ; r

(d) 2-39. + 1 + .3 + .09 + .027 ; r . .3

(e) + r3 r4 + r5 ; r = r .

(0 3(10) + 3(10)° + 3(10)-1 + 3(10)-2 + 3(10)-3 ; r

[sec. 13-3]
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The last series is finite so we know that it has a sum.

Interestingly enough its sum is 33.333 . This illustrates that

any number all of whose digits are identical is really the sum of
1a geometric series with common ratio
10

The series

1 + 1 - 1 - 1 + 1 + 1 - 1 - +

is not geometric because it has no common ratio. The raLi.,, are

alternately 1 and -1 .

To obtain a formula for the sum of the finite geometric

Series ll-3b recall the following formulas from Chapter 1 for

factoring polynomials:

1 - r
2
. (1 + r)(1 - ,

.,1,- r
3
. (1 + r + r2Al - .

An extension of these formulas to the form 1 - rn suggests that

n-.13-3d 1 - rn (1 + r + r
2
+ + r

1
)(1 - r) .

The equality in the last line can be checked by multiplication.

n-1
1 + r + r

2
+ . . + r

r
3---r-r2 -r n-1-rn

1 + r + r
2
+ r

3
+... + r

n-1

1 + 0 + 0 + 0 +... + 0 r
n

If r 1 we may divide both sides of Equation 13-3d by (1 -

to get

1 + r + r
2
+ + r

n-1 1 - rn
_

r

Multiplying both members of the last equation by al we obtain

the sum of Series 13-3b We have proved the following theorem:

0
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Theorem 13-3a:

n-1

13-3e al + alr + a1r2 + + a
1
r
n-1 airk

k.0
a
1
(1 -r

n
)

r
if r 4 1 ,

na
1

where n 1, 2, ...

if r = 1 ,

751

Note that if r = 1 , the series s iris all equal to

a
1 '

so that the sum is na
1

Equatiol, can be used as a

formula for application problems in which r 4 1 . In this

connection, however, we usually represent.the left member of

Equation 13-3e by sn and employ the shorter form

a
1
(rn - 1)

13-3f sn _

Another useful formula for the sum of a finite geometric

series is

13-3g s
n

ra
n

- a
1.

r-

This formula can be easily obtained by making use of Formula 13-3R.

Since ,

a
n
. a

1
r
n-1

ra
n

= alrn

Rewriting 13-3f in the form

a rn - a
1 1

s _
n r - 1

and substituting ran alrn we have 13-3g .

(sec. 13-3)
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Example 13-3a: If the 4
th

term of a geometric series is

6 and the 9I-17-7t-erm is 1458 , find the 1st term, the 10th

term, and the sum of the first ten terms.

Solution: Use Formula 13-3a twice: first with n = 4 ,

a4 = 6; then with n . 9 , a9 = 1458 We get two equations:

6 - a
1
r3

1458 = a r
8

1

Solving, we obtain r . 3 from which a
10

. 4374. Using

Forni,Al.a 13-3f with n we gei.

8 - . 656o .

Example 13-3b: If a finite geometric series has the last

term 1296 , ratio 6 , and a sum of 1555 , find the 1st term.

Solution: Using Formula 13-3g with an . 1296 , r . 6 ,

and s
n

= 1555 , we have

Hence

1555 .
b 1

a
1
. 1 .

6(1296) - al

ercises 13-3

1. Write the next three terms in each of the following geometric

sequences:

(a) -2, -10, ... ,

3
(b) - $ ,

(c) 7, 1, ...

2. If a + b + c is a ceometric series, express b in terns

of a and c .

30
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3. Find the sum of the following series:

(a) 1 + 2 + 22 + + 29 ,

(b) 1 - 3 + 3
2
- 3

3
+ 3

4

(C) 1 1 4. 1 1 1 1 (100 terms)

4. Find the sum of the series

99

E rk

k=5*

5. Find n if 2k . 63 .

k.0

6. Find n if 3 + 32 + 33 + + 3n . 120 .

7. Can two different geometric series have the same sum, the

same first term, and the same number of terms? (Try

1 + r + r
2
. 7 .)

8. Find the sum of the series

9

n+r

)1 r
k , both whe:- r = and when r X 1 .

k.n

. Find the sum of the serAFii

22k+1

k.0

10 Find t7re numbers x to make tre following series geometric:

(a) -4+ x -

(b) If7.77re +120 - x +4M1 - 9K

11. How many terms are them !)71 -the geometric series

1
32 + 16 + 8
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12. Find, if possible, the 1
st

and 2nd terms of a geometric
thn - 1series with 3

rd term . -4, 5th term -1 , o term .

13. Find all sets of 3 integers in geometric progression whose

product is -216 and the sum of whose squares is 189 .

14. If M is the foot of a perpendicular drawn from a point P

of a semicircle to the diameter AB , show that lengths AM ,

MP , MB are in geometric progression.

15. The terms of a finite geometric series between the first and

the last are called geometric means between the first and

last. If the series has only three terms, the middle term

is called the geometric mean between the other two. Insert

(a) 3 geometric means between 1 and 256

(b) 2 geometric means between N/5 and 5 ,

(c) the geometric mean between a
8 and 16b

4

(d) the geometric mean between a and b .

13-4. Limit of a Sequence.

Recall again the definition of a sequence of numbers stated

in Section 13-1 (Definition 13-1a). We will find it convenient

to plot the numbers al , a2 , a3 , an , ... on a number line. .

To avoid confusion we will.label the points associated with the

numbers of the sequence by the symbols which represent them in the

sequence.
a
3

a
1

a
2

a
n

In this way we can establish a correspondence between the terms of

a sequence of numbers and a set of points on the rqmber line.

To study the behavior of a sequence of numbers and the points

corresponding to them let us look briefly at several examples.

[sec. 13-4]
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Example 13-4a:

38.- ,

05 04 03 az 01

0 I 1 1 1

I

16 0 4 i

Points corresponding to successive terms of the sequence get

closer and closer to the point 0 as n becomes large; that is,

a
n

approaches zerc as n becomes large.

% 1 2 3 4 2 6
(b) -g , - -3- 5,6P- 7

as 04 02
CII 03 05

I

0 I

.
2 4 6

If n is odd, the points corresponding to an -get closer and

closer to 1 as n becomes large; if n is even, the points

corresponding to a, approach 71 . Hence an alternately

approaches 1 and -1 .

1 1 1 1 1
(c) 1 , - ,

02 04 06 0
5

03 a

I I I I

-7 6 0 5 3 1

Points corresponding to an are alternately to the right and left

of 0 ; however, as n becomes large successive points get closer

and closer to 0 Hence, an approaches zero as n becomes large.

(d) 1 , -1 , 1 , -1 , 1 , -1 ,

In this case a
n

is alternately equal to 1 and -1 .

(e) 1 , s/7 , 2 , , ,

In this case it is easy to see that as n becomes large so does

a
n

[sec. 13-4]
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The foregoing examples show clearly that there are two kinds

of sequences which differ according to the way in which an

behaves as n becomes large. In both (a) and (c) we see that as

n becomes large an approaches some fixed number A , and we

say that an approaches a limit A as n becomes large. Such

sequences are said to be convergent. On the other hand, in (b),

(d), and (e), there is no fixed number that a
n

approaches.

Sequences of this kind are said to be divergent.

The notion of limit may be familiar to you. In geometry, for

examicle, you learned that the area of a regular polygon inscribed

in a circle approaches the area of the circle as the number of

sides increases. In Section 6-6 of this text it was shown that

the distance between a 'mint on a branch of a hyperbola and an

asymptote approaches zero as the point-moves out indefinitely far

on the curve.

To make the notion of the limit of a sequence precise, we

state the following definition.

Definition 13-4a: The sequence al , a2 , a3 , ... has

a limit A if an
becomes and remains arbitrarily close to A

as n gets larger and larger. A sequence that has a 11.tit is

said to be convergent.

Under the conditions of the definition we also say that "the

limit of an
as n becomes infinite is A " and we write the

statement which appears in quotation marks with the symbol

lim a
n

= A .

n*00

The following examples illustrate the definition. The limit

in each case is given. Write enough additional terms in each

example to satisfy yourself that the given sequence has the

indicated limit.

3 0 3
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5xample 13-4b:

1 1 1 1
1 , , ; A . 0 .

Although it may seem obvious that the limit of the given sequence

should be zero, this example is not trivial and wil_ be useful

later. Symbolically we ordinarily write

lim (-1). 0 .n

Example 13-4o:

1 3 7
, , 1 , , 1 , 1 , ; A = 1 .

Here a_ = 1 when n is odd, and a
n

1 - 2 when n _is even.

It is n== ruled out by the definition that an may be equal to its

limit f= some values of n , or even for infinitely many values

of n .

Example 13-4d:

(2 + ;) ; (2 )
, (2 + ) , (2 - 4) ; (2 + -1) ,

(2 -4) ; A . 2 .

Note that a
n is alternately larger and smaller than A

Sequence (c) in Example 13-4a behaves similarly.

Note: A fact which deserves mention at,.this point is that a

sequence cannot have two different limits, because it is not

possible for an to be arbitrarily close to each of two different

numbers for all n sufficiently large. What is meant here is

illustrated by sequence (b) in Example 13-4a . This sequence, as

already stated, is not convergent; it is divergent.

309
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In the preceding exampl 1 1; for each sequen ',ran

given and it was relatively to$,:- that the indicavu limit

was indeed the limit of the given seque.,e. On the other hand,

determining whether a given sequence has a limit and finding its

value when there is one calls for some specialized knowledge of

the properties of limits. In advanced courses in mathematics

these properties are usually stated as theorems. Before stating

such theorems we first observe that the sequences

al , a2 , a3 , an

b1
'
b2

'
b3

'
. bn

'
.. 5

can be used to form many new sequences; for example,

al + bl a2 b2
' 3

+ b an 4. bn

a
1
b
1

a
' 2

b
2 '

a 3 b 3 , , anbn

a a
1

a2 a
3 n1- , E.- , v- , .. , v- , ... (if each bn 0) ,

1 2 3 n

lall , Ia21 , la31 , ... , lanl

etc.

We conclude this section by stating without proof the

following theorems involving limits. The student will find these

useful in finding the limit 'of a sequence.

Theorem 13-4a: The constant sequence c , c , c ,

has c as its limit; that is

lim c c

310
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Theorem 13-4b: If lim a
n

. A , and lim b
n

= B , then

n-aco n-4 co

(1) lim (ca
n
) = c lim a

n
cA;

n-->co

(2) lim (an
b
n

) lim a
n

lim b
n

= A ;

n->co n-->co

(3) lim (a
n
b
n
) = (lim a

n
)( lim b

n
) = AB ;

n-i000

a_
nlai an A

(4) 1im (141)
lim bn '

bn 4 0 , B 0 .

'nn>00 co

Easiat 13-4e; Find the limit of the sequence for which

Solution: Since

a
n

1 1 1
--n-g =

the given sequence is the product of two sequences having n
th

1 1terms - and - . Thus, by Theorem 13-4b(3) and Example 13-4b,

1 1%
lim (lim F)(lim --) = 0 = 0

n-->co

Example, 13-4X: Find the limit of the sequence for which

a _
n

311
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Solution: Dividing the numerator and denominator by n we

see that

7-7-- I +

Thus, the given sequence is the quotient of two sequences whose

n
th 1

terms are 1 and 1 + respectively.

By Theorem. 13-4b(d) we see that
lim

lim l
1

im --r -
nE:01.7103 1

n-+03 1 + 7n; ( 1 + )

CO

But lim (1 + )= lim 1+ lim =1+0= 1
n-->co

by Theorem 13-4b(b), 13-4a, and Example 13-4b.

Therefore, 1 im - 1 .

n + 1
n--> co

Example 13-4g: Find lim

fl --31. op

1 + 2n + 5n
3

7n
3

Solution: Dividing the numerator and denominator by n
3

,

we note that 1 2
+ --72+ 5

1 + 2n + 5:n n-

7n
3 7

Hence, lim
1 + 2u + 5n3 0 + 0 + 5 .2

.-
7n

3 7 7
n>co

Example 13-4h: Find the limit of the sequence

.5 4 7 6 9 8 11
3 "3- 5 5 b ,

9

(sec. 13-4]
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Solution: If n is an odd integer, say 2k + 1 , then

an = a2k = 21c . Also k)03 as n-403.

2 + i
3

: lim an = lim a2k
+ 1

= lim
2k + 2 .

11400 k---3.001 + ik--4.00 k .-..3* 03

'. If n is an even integer, say 2k , then

2k + 2 .

an = a2k = -777-11 . Again k-..co as n-400.

2
2k + 2 ,

2 + 7
lim an = lim a , lim

2k k + 2 -Lim 7---2 2

k--4-00 k--*co

The novel feature of this example is that as n increases an

alternately gets closer to and farther from its limit. But the

a
n

does, none the less, "become and remain arbitrarily close" to

2 An appreciation of what happens when n becomes infinite

may be visualized by plotting successive values of an on a

number line.

a 2
04 a

1

0 3

4 6 5 7

3 4 3 4
2

Exercises 13-4

1. Evaluate the limit for each sequence that is convergent.

(a) (2 k k+ 1 )

1(.1

1 co

(b) (k -L)

k=1

(c) 1 2 3

5 ' 7 ' '

*(d) 3 , 2 472

313
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2. Make use of Definition 13-4a to decide which of the

following sequences converge. Make a guess as to the limit

for those that converge.

(a) 0

(b) 1 ,

(c) 1 ,

(d) -1

1
(0) ,

(f) (1

(g) 1 ,

(h) 0.6

(i) 2
,

(j) 1 ,

12

1 0 , 2 , 0 , 3 , 0 , 4 ,

, -11% , - ,

-3,z"

, 2 , -3 , 4 , -5 ,

2 3 4
7 , .1 ,

+ ) , (1 + + 4-) ,

, -1 , , 1 , , -1 ,
1

,

, o.66 , o.666 0.6666 ,

85 11

22 32 42

3. Find the following limits:

(a) lim 3n 12n + 4

n: - 2n + 1

noo n n - 1

(c) lim 3n3

n--->co 5n' + 17

(d) lim 3n

n + 1

(e) lim --8s [-(a )-] .
n n

[sec. 13-4]
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h. Show that

(a) lim
n--*m n

1 2
(b) lim ( 12) . 0 ,

n-4.03

5. Prove 'that

does not exist.

6. Prove that

does not exist.

7. Prove that

2n
2
- 3n

1-Lm 4n + 1n--*m

2n 3
lim ,

an
2
+ bn + c a

lim
n--*m dn- + en f

Compare with results in 3(a) 3(h) and 3(c) .

B. If d.. 0 in Exercise..6-can the limit still exist for

certain.values of the constants? Compare with rep 'ts in

Exercises 5 and 6.

9. Prove that for any positive integer r

a n r.+ a nr-1 + a
r0 1 0

b0 nr+b1 nr-1
=

+ + b
r

0
lim

if b
o

p4 0 .

10. Admitting that lim r
n

0 (Irl < 1) , findn
lim

->03

1 - rn

[sec. 13-4]
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11. Find

aim On
2
- 3n + 5)(3n 3

- 1)

n(n4 - 17n 4. 11)

Do not expand the products.

12. Find,the following liMAS lf convergent.

(a) lim 1

n

(b) lim 0
n

(c) lim 7

13-5. Sum of an Infinite Series.

In this section we will make use of the concept of the limit

of a sequence developed in the last section to formulate a

definition for the sum of an infinite series.

Recall that the definition given in Section 13-1 for the sum

of eseries applies only to finite series. Even so you may have

an intuitive idea of what is wanted in the infinite case. For

example, if you meet the number .7 , you may feel quite sure
1that the number 7 is intended. The infinite decimal is, of

course, equivalent to the series.

13-5a 3 3 3
17-3 + + + ,

10 10

and presumably the sum of an infinite series should be defined in
1

such a way that this series will have the sum 7 . We emphasize

that we have the right to make definitions as we like, if only we

agree, to stick to the terminology we adopt. However, we also want

to keep things reasonable and consistent. For example, if we have

a finite series

316
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n

,
2

765

then the sum has already been defined. But sn in 13-5b can

also be regarded as an infinite series all of whose terms are

zero after a certain point. A definition of the sum of an

infinite series must certainly not conflict with our previous

definition in this special case.

Suppose that we are confronted with a special infinite series,

say

13-5c 1 1 1 1

1 2 ' 2 3 ' 3 . 4 ' ." + n(n + 1) +

2:
1

k(k + 1) '

k=1

and are asked to guess what its sum is. We might proceed as

follows. Denoting the sum of the first n terms by sn
we

observe that

s -
n n .777

The numbers s
n

listed above are called partial_ sums; they

are partial sums of Series 13-5c . If you look carefully at them

you may have the feeling that as n increases sn approaches

some number A which ought to be called the sum of infinite

3_1_7
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;eries 13-5c. Thus we re faced with the task of determining

Jach a number A if it Recall that in Section 13-4 you

arned how to find the L1 of a sequence. Let i.s make use of

this fact. Clearly the 1.......cccsive partial: Seriea 13-5c

-1rm a s..,ce; it iz the sequency C ft: 'Dartia :. sums,

ailA We wr22.:e it down as

1 2

Definition 13-4a thi atl,,luence has a limit and by Example

:-4f we know that its is 1 We proposeihat this

".t.miting value be the sum f 3eries 13-5c.

Consider the following _nfinite series:

CO

13-5e 1 - 1 + 1 - 1 + E (-1)k .

k.0

Its sequence of partial sums is

1 , 0 , 1 y 0 p

Clearly this sequence has no limit, and it does not seem reasonable

to call any number the sum of the infinite series.

The last two examples show us that there are two kinds of

series which differ according to the way in which their partial

sums behave. The first type is said to be convergent, the second

divergent.

We are now in a position to define the sum of an infinite

series.

Definition 13-5a: The sum of an infinite series is the

limit of the sequence of its partial sums if this limit exists.

A series which has a sum is called convergent. If no limit exists,

the sum of the infinite series is not defined, and the series is

said to be divergent.

[sec. 13-5]
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Let us review the arg=.e the int7,,oductory examples

which precede the defi:liticn

(1) In each case we . nu.2:,r which we might call

sum of an infinite FEU::: as
00

13-5f a
1
+ a

2
+ E a

k
k=1

(2) We used Definition _-.1:-1c far-the sum af a finite

series to generate a ue of partial sums of the

given infinite serieL we used

13-5g sn al 4. a, - 4. an = ak

k=1

to obtain the sequen:e

13-5h si , s2 , s, ( s
n

)

sum
00

n=1

(3) Finally, we examined :11-auence of partial sums for

convergence. By the definition we have just stated

(Definition 13-5a) we know that "if' t'-e sequence of partial sums

of a given infinite series has a limit, this limit is the sum of

the infinite series. If the sect,ee of partial sums has no

limit then the series does not hare a sum.

At first thought one might aanclude that we are now equipped

with a general method for investtgattmg any inflnite series and

obtaining its sum, if it has one. is true, but the method

outlined above is not generally uset: because of technical

difficulties. Except for some easy ial cases the method is

hard to apply. The difficulty lies in determining an expression

for s
n

whose limit can be calculated.

Thus, mathematicians rely on far more powerful techniques.

Unfortunately, the background on which these depend has not been

developed in this text so we shall nzt introduce them. Thus, in

this text, the work of finding sums -cf infinite series is limited

to series that can be handIed with the-methods presented.

[sec 13-5]
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EXample 13-5a: Ftud the partial sums of the series

!Xi

1 + 2 + = E k .

k=2.

Solution: Using Deflnition 13-1c we obtain the sequence

co

k
2
+ k

1 , 3 , 6 , 10 ,(---2--)
k.1

pcample 13-5h: Find the sum (if there is one) of the series

co

1 11 + - 1) + - ;) + 1 + ): (u7T-r -

k.1

Solution: sl . 1 , s2 7 , 53 . 7 -n - iT

By Example 13-4b the desired limit is 0 . Hence the

series converges and has the sum 0 .

Example 13-5c: Find the sum (if there is one) of the series

co

1 1 1 1 12 + (1 + - 7) + . . . 2 + )7, (1 + E-47-r .

k=1

Solution: The general term of this series is a unit more

than the general term of the previous series.

1
Hence sn n + .

1%
But lim (n

n --> co

does not exist; that is, the series diverges and

has no sum.

320
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Example The harmonic series
1 1

+ + + + .

can be proved to be tftvergent.

Solution: The 77artia.: sums are

si = 1 =

82 = 1 4= 3(7),

sk > ,

1 /1 1
8 8 = ( 1 + + + ) + y5 + . . . + > 5

s 16 ( 1 ) ) 6(i)

1
Starttng at some point 1.7 , where n is some power of 2

(n = , examine the next block of 2m terms,

1 1 1
+

2m + ÷ 2 2m 2111

1
Each of these is certainly greater than or equal to

2m 4. 2m
Hence, this block of terms

2m

2m + -2.

Since we can find an infinite number of such blocks, the sum has

no Limit; that is, the series is divergent.

Example 13-5e: On the other hand the alternating series

1 1 1
1 - + . .47+ ... Is convergent, and comparison with Problem 19

in the exercises will indicate that ttis is the series for

loge2 .

3 )Z.1
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;4e concle this zect.l.r.m by considerimg a problem which

arises as an i=terestlnelight to the concnts that have been
develzmed. Su,ppose that w-F.! are given any seqiunce of numbers. Can

we cc=struct a series such zhat the given 554qu-nce is a sequence

of pe7-tial sumi for t.::te ..1e.s? The answer yes, and we shall

make Tile matter. clear example.

,Example C'struct a series wl=as e. partial sums

corres4pond to the sequIlm=a given in Example 713-4h:

5 4 7 6 2 8 11
, , 5 , -6-

4
Solution: Let sl z2 = s3 =

Since sl = al ,

,

s = a
1

a
n-1 '2 '" a 4 a

n
=

n-1
a
n

we see that

a = s-
1

a2 = s2 sl ,

y

a
n

= s
n-1

Thus the requi_.red.7.aeries can be ttaf..7.1a,d fnam

) (sn

Maling the propvr ions for sa , s2 , etc., we have the

se=les

5 1 4= 176
5 1 1

The last line how to- comtinue the selmfes.

3 9
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InfILnite series are one of the most imbortant tools of

advanced mathematics. For example, it can be :shown that
,2

ex . 1 x %. + + )nc. n. = 1 2 3 ... n ,

3 x5x
sin x = x - + 77 , x i radia- ,

x
4

cos x = 1 - + rr - . , x in rad2...ans .

Furthermore, these Feries converge for ever7 value of x , and the

sum of each series for any x is the value .of the function on the

left for that value af x . Infinite series are also important in

the calcullation of tables of logarithms ant .7ables of trigonometric

functions.

EExakle 13-5g:

decimal places.

Find the value of e correct to four

Solution: As indicated above,

1 1 1
e= 1 + 1 + + 77- +

n!

The partial sum sn is & goQd appra!--imation to the sum of an

infinite series if n .is large. We

1 1.00000L

1 . 1.000000

1/2! .

1/5! . ...:21833 a

.oza389

1/71 = .000198

1/8! = .000025

s8 2.718279

If s8 is rounded off to four decimal places, we obtain 2.7183

which is the value of e ::crrect to four decimal places.

uzc.. 13-5]
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Exercises 13-5

1. Find the partial sum for the

2 + 7 + 12 + 17 +

2. Find th e! partial sum for the
7 7 7

115,5 TU55 10,000

3. Find the partial sum for the first

15 + 12 + 9 + 6 +

4. Find the partial sum for the first

1

first n terms of the s-eries

first n terms of the series

5. Find a series whose

6. Find a series whose

7. Find a series whose

8. Find a series whose

9: Find a series whose

10. Find the sum of the

3

terms of the series

terms of the.a.---eries

partial sums are 2, 6, 12, 20, 30, ...

partial sums ar57-.: 2, 6, 14, 30, 62, ...

partial sums are 2, -2, 6, -10, 22,

partial sums are 3, 8, 15, 24,

partial sums are 2, 8, 20, 40,

series

E (3n + -2)(n - I)

ma

11. Find a series whose partia: sums Sk aie giver_ by the farma1a

S Ik 2(3k +2)

12. Find the sum of the series

00

( 2 2
2

k +2c+1 k
k=1

co

13. Show that the series (k 2kj- k
2

k=1

14. Determine whether the series 1 -

diverges or converges.

[sec. 13-5]
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15. The area under y = x from x = 0

to x = 1 , approximated by n

rectangles is the sum
n-1

11.2 1 n-l% = k

k.0
n-1

Find the lim k .

n k=0

16. The area under y = x
2 from

x 0 to x = 1 , approxi-

mated by n rectangles is

the sum

1 r 0 1 4 (n-1)
2

,+ 2 ÷ ÷ .
n n n n2

n-1

k2 .

n

773

n-1

k2 n(n+l)(2n+l) , find the lim k2 .

n
k=0

k.0

17. Find the limit of the sum (if there is one) of

2 2 2

2 1 1
Hint: (2k + 1)(2k + 3) 21 +3 2k + 3

18. With the series given for ex , find the approximation for,AT.

19. An approximation for the natural logarithm is given by the

following series for -1 < x 1 .

1 1
loge (1 + x) x

2
7!)c, 7x3 ...

Use this series to estimate
Compare this result with the

1
y = H, in Chapter 9.

loge 1 1 to 4-place decimals.
appropriate area under the curve

[sec. .13-5]

8 2 5



774

13-6. The Infinite Geometric Series.

No infinite arithmetic series converges unless all of its

terms are zero; hence, the convergence of infinite arithmetic

series will not be considered further. On the other hand, we have

already seen that certain infinite geometric series may converge.

For example, the,infinite decimal .7 mentioned at the beginning

of Section 13-5 has the value 17 , and this is equivalent to
1saying that a certain geometric series converges and has the sum 7 .

By Theorem 13-3a the n
th

partial sum s
n of the infinite

geometric series

13-6a

is

CO

al + alr + a1r2 + alrk

k.0

s
n

= a fl - r )

1 - r '
if r 1 .

Can this partial sum have a limit as n becomes infinite? It

depends on r
n

. If r = 2 , then r
2
. 4 , r

3
. 8 , etc., and

rn increases rapidly as n increases. No limit exists for rn ,

nor for s
n

If r -2 , then r
2 . 4 , r

3
. -8 , etc., and

again no limit exists. On the other hand, if r ± 1/2 , then
2

r = 1/4 , r3 = ± 1/8 , etc., and rn approaches zero. That is,

s
n will have the limit

1 - r The result is evidently going

to depend on the absolute value of r . The above argument shows

that if In > 1 then Series 13-6a diverges; if Irl < 1 then
al

Series 13-6a converges and has the sum Finally, if

r = - 1 the series reduces to

or

al + al + al + ,

al - al + al -

These certainly diverge unless al . 0 . We summarize our results

by stating a theorem.

2 63
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Theorem 13-6a: The infinite geometric Series 13-6a

converges and has the.sum 1
a1
-77 if Irl < 1 . It diverges if

Irl > 1 (unless al ..0 , when it converges).

Example 13-6a: Find the sum of the series

4. 1

)is
. E .0k

k.0

Solution: al . 1 , r

1 4
and has the sum

5

, Irl < 1 . The series converges

Example 13-6b: Find the value of the repeating decimal

.142857

Solution: This IS equivalent to the geometric series

b b
--6 + + + . . ,

10 10 10

al 7 b(106 ) , r = 10
-6

< 1 .

The series converges and has the sum

b(10-
6

) b 142857 1

-61 - 10 106- 1 999999 7

b 142857 .

Example 13-6c: A train is approaching a point P 30 miles

away, at 30 miles per hour. A fly with twice the speed leaves

P , touches the train, returns to P and repeats the process

- until the train reaches P . How far does the fly travel?

3 2 7
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, Solution: To simplify matters:Let v

of the train, even though we 1011341 that v

represent the T:elocity of the fly. Suppose

t
1

hours afte:- the start. Thus after t
1

2vt
1

P and tti 2. train wiLl be

2 vt

3

I 0

represent the velocity

30 , and let 2v

the first meeting is

hours the fly will be

30-v t1 miles from P

20

v t

30

1
Hence 30-vt1 2vt1 , vt7 = 1C ; and since v = 30 , t1 .

So the fly has traveled 20 mfaes and the train 10 miles when

they meet for the first time Therefore the fly's first round

1
. trip is 2(2v)(7) milea. The train is now 10 miles from

p , and we repeat the computation. Let t2 be the time required

for the fly to go from P to the train the second time. Thus

10 1
10-vt2 = 2vt2 , vt2 7- amd stance v . 30 , t2 = . The

3

fly's second round trip :!Ls 21271(._) etc. ,The answer, in
3 3

series form, is

4v 1v 4v

.3 a 3°

1
where al

'
r = < 1 By Theorem 13-6a the sum is

4v(-7)( 1 2) 2v . 6o .

_
3

The fly-travels 6o miles. This result can be checked directly

without using:series. We hame only to note that the train needs

one hour to get to p amf ff the tly wastes no time it can do

60 miles in that time_ have deliberately done this example

the hard way to illustrate Theorem 13-6a for a case in which we

know the answer in advance_

3 2 8
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Exercises 13-6

1. Find the sum of the series

(a) 1 + + + ,

(b) 9 - 3 + 1 -

2. Find the sum of the series

(a) r + r2 + r3 + , (Ir < 1) ,

(b) (1 - + (1 - a)° + (1 - a)1 + (1 - a)2 ...

For what values of a is the series convergent?

3. Write each of the following repeating decimals as an equiva-

lent common fraction.

(a) 0.

(b) 0.60

(c) 3.-27

(d) 2.67

4. What distance will a golf ball travel if it is dropped from a

. height of 72 inches, and if, after each fall, it rebounds

9/10 of the distance it fell.

5. Solve the following equation for x :

= 1 + X + X 2 +

6. Solve the following equation for x :

1 + x _ x + x
2
+ x3 +

7. Solve for al and r if

3
l.,al + alr + al2 + = ,

3al - a1r + a1l.'
2

- = .

and

[sec. 13-6]

3 9



778

8. An equilateral triangle has a perimeter of 12 inches. By

joining the midpoints of its sides with line segments a

second triangle is formed. Suppose this operation is

continued for each new triangle that is formed. Find the

sum of the perimeters of all triangles including the

original one.

9. A hare and a tortoise have a race, the tortoise having a

5000 yard handicap. The harels speed is V = 1000 yards -

per minute; the tortoisels speed is v . 1 yard per minute.

It is sometimes said that the hare can never catch the

tortoise because he must first cover half the distance

between them. Detect the fallacy.

10. A regular hexagon has a perimeter of 36 inches. By

joining the consecutive midpoints of its sides with line

segments, a second hexagon is formed. Suppose this is

continued for each new hexagon. Find the sum of the

perimeters of all hexagons including the original one.

11. A square has a perimeter of 12

inches. Along each side, a point

is located one-third the distance

to the right of each vertex. By

joining consecutive points, a new

square is formed. Suppose this

process is continued for each new

square.

(a) Find the sum of the perimeters

of all such squares.

(b) Find the sum of the areas of

all such squares.

330
[sec. 13-6]
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13-7. Miscellaneous Exercises.

1. Find the sum of the series

3
[(-2)k

- 2k] .

.k=0

2. The following series are either arithmetic or geometric;

continue each through 6 terms:

(a) 8 + 4 + 2 4- ,

(b) 3 6 + 9 +

( c
1 1 1+ 1-6 + +

(d)
3

(e) a
2

-4- a
4 + a6 +

(f) - 1 - + ,

3. Find the sum of the series

k.1

4. Use the identity

1k .7(k(k + 1) - k(k - f)] to give a new proof of

Theorem 13-2a.

5. By use of the identity

2k + 1 = (k + 1)
2 - k

2
, prove that

1 + 3 + 5 + + (2n - 1) . n2 .

331

[sec. 13-7]



780

6. By use of the equation

1 1 1
k 1 k(k show that

1 1 1 1
'2 12-77 1-7T "' n(n + 1) 22 7.7.7

7. Show that the geometric mean between two positive integers

is not greater than the arithmetic mean between them.

8. The harmonic mean between two numbers a and b is a

number h whose reciprbcal is the arithmetic mean between

the reciprocals of a and b :

2aba

Show that in the series

1 1 1,
+ + + +

each term after the first is the harmonic mean between its

two meighbors.

9. Show that the number of vertices of a cube is the harmonic

mean between the number of its faces and the number of its

edges.

10. Show that geometric mean between two numbers is also the

geometric mean between their arithmetic and their harmonic

means. First try the result for 2 and 8 .

11. Find the sum of the following series correct to 2-place

decimals.

5

2 I'S E where 217 Z.: 3.464 .

(-3)k (2k + 1)

3 3 2
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12. Twenty-five stones are placed on the ground at intervals of

5 yards apart. A runner has to start from a basket 5 yards

from the first stone, pick up the stones and bring them back

to the basket one at a time. How many yards has he to run

altogether?

13. Find the sum of n terms of the series whose r
th

term is

3
-4- (3r + 1) .

14. Too hikers start together on the same road. One of them

travels uniformly 10 miles a day. The other travels 8

miles the first day and increases his pace by half a mile each

succeeding day. After how many days will the latter overtake

the former?

15. How many terms of the SUM 1 1- 3 + 5 + ... are needed to

give 12321 ?

16. Find s
20

if a3 . 5 and a37 . 82

17. (a) Find the sum of all even integers from 10 to 58

inclusive.

(b) Find the sum of all odd integers from 9 to 57 in-

clusive.

18. A person saved thirty cents more each month than in the

preceding month and in twelve years all of his savings

amouAted to ,;9,424.80 . How much did he save the first

month? The last month?

19. If four quantities form an arithmetic sequence, show that

(a) The sum of the squares of the extremes is greater

than the sum of the squares of the means.

(b) The product of the extremes is less than the product

of the means.

20. (a) A constant c is added to each term of an arithmetic

progression. Is the new series also an arithmetic

progression; if so, what is the new difference and how

is the new sum related to the original sum?
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(b) If each term of an arithmetic progression is multiplied

by a constant c is the new series an arithmetic

progression; if so, what is the new difference and how

is the new sum related to the original?

(c) A new series is obtained by adding a constant c to

each term of a geometric progression. Is the new

series a geometric progression; if so, what is the new

ratio and how is the new sum related to the old?

(d) A new series is obtained by taking the reciprocal of

each term of an arithmetic progression. Is the new

series an arithmetic progression?. What is the new

difference?

(e) A new series is obtained by taking the reciprocal of

each term of a geometric progression. Is the new series

a geometric progression? What is the new ratio?

(0 Do the negatives of each term of a geometric progression

form a geometric progression? If so, what is the new

ratio?
2n+1

21. Find the value of 71 E-T-T k

k.1

1 1 1
22. Prove that if E-T-F are in arithmetic

progression, then a
2

, b
2

, and c
2

are in arithmetic

progression. (The-converse is also true.).

23. Find the sum of 1 1 1
- x + ... to n terms.

1 -,(T

Hint: rationalize the denominators.

24. If the sum of an arithmetic progression is the same for m

terms as for n terms, m n , show that the sum of

m + n terms is zero.

*25. The sum of m terms of an arithmetic progression is n ,

and the sum of n terms is m . Find the sum of m + n

terms. (m n) .

[sec. 13-7]
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Chapter 14

PERMUTATIONS, COMBINATIONS, AND THE BINOMIAL THEOREM

14-1. Introduction. Counting Problems.

The process of counting involves three fundamental ideas.

(I
1

) The first is that of a pairing, or one-to-one corre-

spondence. Thus we count our fingers, or our guests at dinner,

by associating with each one of the things being counted one of

the natural numbers beginning with 1 and taking them "in order".

We stop this process when we run out of fingers, guests, or what_

ever it is we are counting.

(I
2

) The second idea is tnat underlying addition. Given two

finite sets sharing no elements, the number of elements in their

union is the sum of the number of eIeements in each. Thus 76he

number of peopi5 at a swimming part: is the sum of the number in

the pool and the. number not in the 'n.aol.

( I 3
) The zmird idea is that underlying multiplication.

Given n sets ;where n is a natural number) no pair of which

share any elements and each one of which may be paired with the

set (1 , 2 , , m) of all natural numbers not exceeding the

natural number m , the number of elements in the union of the n

given sets is n x m . Thus we may count the students (or the

seats) in a classroom by multiplying the number of rows by the

number in each row (provided each row has as many as any other row).

To illustrate these ideas we present a method (involving all

three of them) for proving

n(n + 1)
1 + 2 + 2

(This formula was discussed in Chapter 13.)

0
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Let us consider a collection of dots arranged in n rows,

each containing n + 1 dots (Figure 14-1a). We pair the n

rows to the natural numbers 1 2 , , n and the n + 1

columns to the natural numbers 1 , 2 , , n , n + 1 ; and

write the number associated with each row at its left, that associ-

ated with each column above. This is a use of the first idea, Il

Now we draw a line across the array'of dots as shown, dividing it

n n+I
into two parts.

1

3 4 5

2 * 4)

3 o

4 * e

n o

Fig. 14-la

In that part below the line, we find that

the 1 st row has 1 dot ,

the 2nd row has 2 dots ,

the 3rd row has 3 dots ,

OS gm. ow.

the n
th

row has n dots .

'Thus, since no two rows share any dots, our second fundamental

idea, 12 , asserts that there are

dots below the line. Call this number s Then

s 1 +2 + + n .

3 3 (3
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Now, above the line, we find that

the 21 d column has 1 dot ,

the 3
rd column has 2 dots ,

thh
the 4 column has 3- dots ,

- we

the (n + 1)
5t

co1 umn has n dots .

Hence there are also s dots above the diagonal.

Now, applying our second idea to these two parts of our array

we find that s + s is the total number of dcts in it.

However, our third idea, 13 , tells us that the total number

of dots is n(n + 1) , the number of rows times the number of

columns. Combining the results of. our two counting methods, we

have

or

Thus

2s . n(n -+ 1)

n(n + 1)
s

2

n(n + 1)
1 + 2 + + n 2

In this chapter we study a number of counting problems--i.e.,

problems whose solution may be made to depend on the three funda-

mental ideas of counting. Such problems ocur frequently in

mathematits, science, social studies and many other fields. One

of the richest sources of these problems is the theory of games

of chance. How many ways may one draw. a straight flush or a full

house from a fair deck, or roll a seven with a pair of dice? A

water molecule (H
2
0) has three atoms, and therefore it is planar.

But a sugar molecule (C12H 22°11) has 45 How many ways may

these 45 atoms be arranged in space, and, how many of these

arrangements are chemically feasible? We won't answer all of

these questions--certainly not the last one--but we shall study

ways to handle a great many of this sort.

3 7
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Relatively few of the examples we shall give and the

exercises we shall set can be considered earth-shaking. The

interest will always be in the theory, in the methods, and in

the ideas they illustrate, and only very rarely, in the "practical

value" of their answers.

One of our objects in developing this theory is to obtain

results which are "general" in the sense that the numbers involved

are arbitrary. Of course, when one uses any of our results--for

example, to answer questions about batting orders, snake-eyes,

molecular structure, royal flushes, or how to line up a firing

squad--he is dealing with a problem which comes with definite

numbers of the things involved. The value of our general theory

is that it can cope with any number of such problems, no matter

what numbers may be involved in each of them.

Given enough time (in some cases, millions of years) and a

large, fast, computer (some of which cost millions of dollars,

plus upkeep) one could solve many of these specific f:t4p4mt1ng

problems by listing all the possibilities and tallying them. Our

object is just the opposite. We set for ourselves the-task of

working such problems without actually listing all the possi-

bilities. For example, in Section 14-4, we determine the number

of Senatorial "committees" that are theoreti:cally possible. This

number is so monstrous it would be entirely out of the question

even to contemplate making a list of the committees. Very likely,

there isn't enough paper in the world. But the answer to the

question of the Senatorial committees--which depends on the

number of Senators (100)--is little or nothing compared ta-the

numbers in some of the counting problems which arise in connection

with, iay, a mole of gas, for there are 6.025 x 10
23 molecules

in'a mole. .Indeed the number of possible committees which can be

formed among any group of people in the world is a t'iviality

compared to the number of possibilities for the chemical reactions

which might occur in a toy balloon.

338
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Many counting problems are actually infinitely many problems

expres6ed as one. Examples are how many ways may a natural number

n be written as a sum of four squares, or, as a product of natural

numbers. The answers depend on n , which may be any natural

number. Thus specific cases like n = 3 or n . 10 , etc., may

be handled by enumeration. But getting a formula good for

arbitrary n is another matter entirely. Many such problems are

beyond all methods known at present. In this chapter we discuss

a few of the knoOn-ones.

Exercises 14-1

1. Consider the following array

L 0

. LOG
L 0 G A

LOGAR
LOGARI

LOGARIT
LOGARITH

L OGARITHM
L OGAR-ITHMS

Determine the number of ways one may spell LOGARITHMS start-

ing with alq one of the Lts and moving either down or to

the right to an 0, then either down or to the right to a G,

etc., ending with the S. (Hint: begin with the top two or

three lines, and determine the number of ways to spell LO

and ,LOG , then work with the first four lines, first five,

etc., until you recognize a pattern in your answers.)

339
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2. (a) Write an addition table for the numbers from 1 to 6 .

(b) Using this table answer the following questions about .

honest dice games:

(i) What number is one "most likely" to roll?

(ii) Is one "more likely" to roll a power of 2 or a

multiple of 3 ?

(iii) Is one "more likely" to roll a prime or a non-prime?

14-2. Ordered m-tu:ples.

Suppose we wish to count the number of routes from A to C

via B in Figure 14-2a. There are three paths from A to B

(denoted by a,b,c) and four paths from B to C (denoted by w,x,y,z)

Fig. 14-2a

Now a route is completely described by naming a pair of these

letters, provided we choose one from the set (a,b,c) and the

other from the set (w,x,y,z) . Thus (a,x) , (b,w) , (c,z)

describe such routes. We tabulate all the possibilities in

Table 14-2a.

--I

a (a,w) (a,x) (a,y) (a,z)

b (b,w) (b,x) (b,y) (b,z)

c (c,w) (c,x) . (c,y) (c,z)

Table 14-2a

(sec. 14-2]
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Each entry in the body of the table describes one of the

possible routes. We see there are twelve of them.

Although we have enumerated all the cases in arriving at our

answer, we may now see that this is quite unnecessary.

Our problem can be described as determining the number of

ordered pairs which can be formed using an element of the set

(a,b,c) as first member and an element of (w,x,y,z) as second

member. (The body of Table 14-2a exhibits all of these pairs.)

Since we are interested only in the number of pairs here we are

interested merely in the product of the number of members in each

of our sets--the number of rows in the table times the number of

columns.

We may state the fundamental idea involved in a general way

as follows.

Given a pair of finite sets Al and A2 with,

respectively, nl and n2 members each, there are

ni x n2 ordered pairs, or couples, which may be formed

with a member of A
1
as first member and a member of A

2

as second member. For our "route" problem, Al = (a,b,c),

A2 . (w,x,y,z) , and nl . 3, n2 = 4.

We illustrate this general principle by turning to a number

of examples in which it may be used.

Example l4-2a: A quarter and a dime are tossed. How many

head-tail pairs are possible?

Solution: There are two possibilities for the quarter (H,T)

and two for the dime (h,t)

(H,h)

(T,h)

The number of pairs is 4 , the product 2 x 2 .

[sec. 14-2)
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Example 14-2b: A library contains 7 geometry books and

13 algebra books. How many ways may a student select two books,

one of them a geometry and the other an algebra?

Solution: Here we are interested in the number of couples

(geometry, algebra). According to our principle the number of

such couples is 7 x 13 , or 91 .

Example 14-2c: How many exactions may be formed whose

numerator is a natural number not exceeding 10 and whose

denominator is a natural number not exceeding 15 ? (Ignore the

fact that some of these fractions represent the same rational

number.)

Solution: 10 x 15 150 .

Example 14-2d: Given a hundred men and a hundred women, it

is possible to form 10,000 different couples--although not

simultaneously!

Let us now extend our "route" problem by supposing there are

five paths joining C to a fourth point D .

Fig. 14-2b

Let (m,n,o,p,q) be the set of paths joining C and D . Now

how many routes are available for a trip from A to D via B

and C , using only the paths pictured?

[sec. 14-2)
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We have already found there are twelve routes from A to C

via B :

(a,w) , (a,x) , , (b,w) , , (c,z) .

Taking advantage of this knowledge, we may describe any route

from A to D via B and C by couples such as

((a,w),m) , ((a,x),n) , etc.

As before, we make a table.

(a,w)

(a,x)

(aa)
(a,z)

(b,w)

(b,x)

(ba)
(b,z)

(c,w)

(c,x)

(c,y)

(c,z)

((a,w),m)

((ba),n)

Table 14-2a

((aa),P)

((c,z),q)

We have indicated only a few of the entries in the body of the

table. Using our principle we aee at once that there are 12 x 5,

or 60 , possibilities.

Since each of our new "couples" describes a route made up of

three paths, we may drop the extra parentheses, writing simply

(a,w00 for ((a,w),m) , etc., and refer to (a,w,m) as an

ordered triple. Thus each route from A to D via B and C

in Figure 14-2b may be described by an ordered triple. Some more

3
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of these routes are (a0x,n) (c,y,p) (b,z,p) . Our principle

tells us there are 60 ordered triples whose first component is

an element of (a,b,c) , whose second component is an element of

(w0x0y,z) , and whose third component is an element of (m,n0o,p,q).

We may make further extensions to ordered aladruples,

quintuples, etc.:

(al , a2 , a3 , a4) = ((al , a2 , a3) , a4)

(al , a2 , a3 , a4 , s5) . ((al , a2 , a3 0 a4) , a5)

and generally to ordered m-tuples,:

(al , a2 , , am)

with m components. Here m is any natural number.

As we saw in the case of ordered triples we may extend our

general principle to covered ordered m-tuples:

If Al , A2 , , Am are finite sets having,

respectively, nl , n2 , , nm elements, there

are nl x n2 x x nm ordered m-tuples of the form

(al a2 0 am) where al is a member of Al

a2 a member of A2 , 0 am a member of Am .

Example 14-2e: In a certain club no member may run for more

than one office at the same time. If in one election there are 8

candidates for president, 7 for vice-president, 4 for secretary,

and 1 for treasurer, how many ways may these offices be filled?

Solution: We want the number of ordered quadruples

(al a2 a3 , a4) where Al has 8 elements, A2 has 7 ,

A3 has 4 , and A4 has 1 . Our princiPle tells us the answer

is 8x7x4x1 , or 224 .

3 4 1
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Example 14-2f: Consider a club having 4 members, 3

offices, and a rule permitting any member to hold any number of

these offices at the same time. How many ways may the offices be

filled?

Solution: The number of ways of filling the offices is the

number of ordered triples, each of whose components is any one of

the members of the club. Here m = 3 , Al A2 . A3 and

n1 . n2 . n3 . 4 . Our principles tells us the answer is

4 x 4 x 4 , or 64 .

Extending the result in Example 14-2f to cover the possibili-

ties for m-tuples each of whose components are members of a set

having n elements, we find there are nm such m-tuples. For,

in this case, we have

and

Thus

Al . A2 . . A
n

n
1

n
2

. nm = n

n1 xn2 " '
x xnm

n
m

gives the number of all possible m-tuples which can be formed,

each of whose components belongs to a given set having n elements.

Exercises 14-2

1. A furniture company has twelve designs for chairs and five

designs for tables. How many different pairs of table and

chair designs can the company provide?

2. How many pitcher-catcher pairs may be formed from a set of

four pitchers and two catchers?

3. How many pitcher-mug pairs may be formed from a set of eight

pitchers and eleven mugs?

343
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4. How many different committees consisting of one Democrat and

one Republican may be formed from twelve Democrats and eight

Republicans?

5. How many ways may a consonant-vowel pair be made using the

letters of the word STANFORD ?

6. How many consonant-vowel pairs may be formed from the letters

of the word COURAGE ?

7. How many numerals having two digits may be formed using the

digits 1 , 2 , 3 , , 8 ,,9 ?

8. Ten art students submitted posters in a contest which was to

promote safety. How many ways could two prizes be awarded

if one prize was to be given on the basis of the art work and

the other on the basis of the safety slogan chosen?

9. There are four bridges from Cincinnati to Kentucky. How many

ways may a round trip from Cincinnati to Kentucky be made if

the return is not necessarily made on a different bridge?

10. How many ways may a two-letter'inord" be formed from a twenty-

six letter alphabet? (A "word" need not have meaning.)

11. How many different triples of Ace-King-Queen can be

selected from a deck of 52 cards?

12. How many three digit numerals representing numbers less than

GOO may be formed from the digits 1 , 2 , 3 , , 8 , 9 ?

13. Using the digits 1 , 2 , 3 , 4 , 6 , 8 , how many three

digit numerals may be formed if the numbers they represent

are even?

14. At a club election there are four candidates for president,

four for vice-president, six for secretary, and six for

treasurer. How many ways may the election result?

15. A freshman student must have a course schedule consisting of

a foreign language, a natural science, a social science, and

an English course. If there are four choices for the foreign

language, six for the natural science, three for the social

science, and two for English, how many different schedules

are available for freshmen?

3 4 )
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16. The Super-Super Eight offers twelve body styles, three

different engines, and one hundred twenty color schemes.

How many cars will a dealer need in order to show all

possible cars?

17. Vnw many quadruples Ace-King-Queen-Jack may be formed

f....om a bridge deck?

18. From twelve masculine, nine feminine, and ten neuter words,

how many ways are there to select an example consisting of

one of each type?

19. In the decimal system of notation, how many numerals are

there which have five digits?

20. A psychologist has rats running a maze having ten points at

which the rat may turn left or right. How many ways could a

rat run the maze if he followed a different route each time?

*21. Using the digits 3 , 5 , 6 , 7 , 9 how many three digit

numerals representing numbers greater than 500 can be

formed if (a) repetition of digits is allowed; (b) no

repetition of digits is allowed?

*22. How many committees consisting of a Democrat and a Republican

may be formed from five Democrats and eight Republicans if a

certain Democrat refuses to work with either of two

Republicans?

*23. There are five boys and eight girls at a dance. If Hepsibah

and Prunella refuse to dance with either Hezy or Zeke, and

Obediah will not dance with either Hepsibah or Cillisue, how

many ways may dancing couples be paired?

14-3. Permutations.

Let A be the set (a,b,c) . We examine the ordered couples

which may be formed using elements of A . We see there are two

347
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kinds: (i) those

duplications. Thus

in which duplications occur, (ii) those without

(a,a) , (b,b) , (c,c) are of the first kind;

a

a (a,a) (a,b) (a,c)

b (b,a) (b,b) (b,c)

c (c,a) (c,b) (c,c)

Table 14-3a

the others of the second. There are 3 of the former--one for

each element of A --and 6 , or 32 - 3 , of the latter.

In general, given a set having n elements we may form n
2

ordered couples whose components are members of the given set. Of

these n
2

couples, there are n (one for each element) which

have duplications. Hence there are n
2
- n without duplication.

Those ordered m-tuples of elements of a set having n

eleffients which have no duplications are called permutations of the
n elements taken m at a time or, for brevity, m - permutations

of the set. Of course, m < n . Thus the number of 2-permutations

of a set having n elements is n
2
- n .

The n-permutations of an n-element set are called simply

permutations of the set.

There are many problems in mathematics, science, and other

fields--including gambling--which may be solved with a knowledge

of the number of m-permutations of an n-element set. We have

determined this number for m = 2 We proceed to larger values

of m .

As a preliminary, let us look again at the couples. We con-
sidered a table with n rows and n columns. To avoid dupli-

cations we omitted one couple from each row. Since we want only

348
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J p

the number of 2-permutations, and not a list of them, it makes no

_difference in our counting problem if we simply remoVe a whole

column from the complete table, rather than just one couple here-

and-there in each row. Deleting one of the columns gives us a

" reduced" table with n rows, n - l'columns, and hence n(n - 1)

entries. This number checks with our previous "count" n
2
- n

and o.an be made to appear "plausible" if we think of the formation

oV orderd couples without duplication as a pair of "choices". We

a?',e f-vee to choose any ot the n elements as first component and

c.ro; the remaining n - 1. elements as second component. Since

ovr educed" table has n(n - 1) entries we can say that this

p,Ar of choices may be made in n(n - 1) ways. --

Moving on to 3-permutations of a set having n elements

ordered triples without duplication) we can imagine a table

listing the 2-permutations on the left (there are n(n 7 1) of

them) and the n elements of the set across the top. (For

example, Table 14-3b, where n . 3 .)

a

(a,b)

(a,c).

--(b,c) (b,c,a)

(b,a)

(c,a)

(c,b) (c,b,a

(a,c,b)

b)

Table 14-3b

(a,b,c)

(b,a,c)

To avoid duplications in the triples we must milt 2 triples
,

from each of the n rows. As there are kn
2 - n n spaces in

349
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the bable (number of rows times number of columns) and 2 blanka

in each row, there are

, 2
k n - n)n - 2(n

2
- n) ,

or (n
2

- n)(n - 2) , or n(n - 1)(n - 2) , entries in the table.

As with the couples, we are only,interested in the number of

triples. The same result may be obtained by simply deleting 2

columns, leaving n(n - 1) rows and n - 2 columns. Hence we

have another way of seeing that n(n - 1)(n - 2) is the number of

3-permutations of a set having n elements.0

Carrying on the same reasoning we may move to quadruples,

quintuples, ... , m-tuples, and we get

n(n- 1)(n - 2)(n - 3)

n(n - 1)(n - 2)(n - 3)(n - 4)

n(n - 1)(n - 2)(n - 3)...(n - (m - 1)) ,

respectively, for the number of each having no duplication.

A great variety of symbols is used to denote the number of

m-permutations of a set having n elements. Some of the more

popular ones are

n (m) YnPm P ,
Pm P(n,m) .n

We shall use the last of these in this book.

Writing P(n,m) for the number of m-permutations of an n

element set, our result may be expressed by the formula

P(n,m) = n(n - 1)(n - 2)...(n - m + 1) .

When m n , we have

P(n,n) = n(n - 1)(n - 2)...(n - n + 1)

n(n - 1)(n - 2)...2 1 .

[sec. 14-3]
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The last product occurs so frequently in these and other

problems, a special notation has been Introduced for it:

n! = n(n - 1)...3 2 1

The expression " n! " is read "n factorial" .

As examples of "factorials" we have

3! . 3 x 2 x 1 . 6.

4! . x 3 x 2 x 1 . 24

5t= 5X4X3x2x1 120

10! . 3,628,800

Observe the following property of factorials:

n! = n(n - 1)! or (n + 1)! = (n + 1)(n!) .

With this formula we may calculate n! for each natural number n

by a step-by-step process. However, since the numbers grow so

fast these calculations soon get too involved. Recourse to tables

is recommended. (At the end of Section 14-4 we give a table of

the common logarithms of n! for n up to 100 . This table will

be useful for many of the computations arising in the next section.

But it may also be used, in conjunction with the logarithm table

following it, to get approximations to n! for n up to 100 .)

The equation

(n + l) = (n + 1)n!

suggests the possibility of extending the definition of n! to

include n = 0:

1, . 1(w) ,

i.e. 0! = 1 .

We shall find that doing this will enable us to simplify many of

the problems we consider in this chapter.

351.
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Using factorial notation, our formula for P(n,m) may be
expressed quite compactly:

P(n,m) = n(n - 1)(n - - m + 1)

(n-m= n(n 1)(n - 2)...(n - m + 1)

n!

2

, Interpreting 0! to be 1 , this expression holds even when m = r
for then

n! n!P(n,n) - (n - n)!

which agrees with our previouLz, expression for P(n,n) .

Example 14-3a: In a contest with twelve entries, how many

ways can a first and a second prize be awarded if no entry is

entitled to more than one prize?

Solution: Our problem calls for the number of couples of the

form (one entry, another entry) without duplication, where the

first entry wins first prize and the other wins second prize. The
number of such couples is P(12,2) , so the answer is 12 x 11

or 132

Example 14-3b: A map of four countries is to be colored with

a different color for each country. If six colors are available,

how many different ways may the map be colored?

Solution: We want the number of 4-permutEccions of a set

having six elements. Each quadruple has the form (color of first

country, color of second, color of third, color of fourth). The
answer is p(6,4) , which is 6X5X4x3 or 360 ways.

(see. 14-3]
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Example, 14-3c: Suppose a class of twenty students decides to

leave the room in a different order each day. How many days would

be required for the class to leave the room in all possible orders?

.Answer: 20! days. If they work at it 365 days a year, it

will take.approximately 6.7 quadrillion years. (20! 2.4329 x 1011

Even if they went through the door in a different order every second,

it would take over 70 billion years.

Example 14-3d: H.Jw many ways may the numbers be arranged on

a roulette wheei? (There are 38 "numbers": 00,0 , and the

natural numbers 1 , 2 , 3 , 36 )

First Solution: If it is an honest wheel we cannot distinguish

any one place from any other. Thus no matter where 00 may be

placed, there are 37) ways of arranging the numbers

'0 , 1 , 2 , , 36 . (If it is not an honest wheel, so that the

places are distinguishable, the number is 38! .)

Second Solution: Let us consider the set of all 38-permuta-

tions of (00, 0 , 1 , 2 , 3 , , 36) Their number is

P(38,33) = 381 . Corresponding to each such 38-permutation,

(al , a2 , , a38) ,

there are 37 other peimutations

(a p a3 p a4 a38 al)

(a3 , a , a38 , al , a2) ,

(a38 , al a35, a36 , a37)

which cannot be distinguished from it on the (honest) wheel.

5 3
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Thus if N is the number of "distinguishable" permutations of

(00, 0 , 1 , 36) , we have

38N = P(38,38) . 38! ,

so N . 37!

In !Ile general case, there are (n - 1)11 circular permuta-
tions of a set having n elements.

Exercises 14-3

1. How many five letter "words" may be formed from the letters

A, B, C, D, E, F, and G ? How many if no letter is repeated?
2. How many ways may a president., vice-president, and secretary

be elected from a club of twehty-five members if any member

may hold any one of the three offices, but no member may hold
more than one office simultaneously?

3. How many three digit numerals may be formed using the digits
1 , 2 , 3, 4, 5 , 6 if no digit is repeated in a numeral?

HO4 many if repetitions are allowed?

4 How many four digit numerals may be formed using the digits

1 , 2 , 3 , 4 , 5 , 6 if no digit is repeated in a numeral?

How many if repetitions are allowed?

5. How many four digit numerals may be formed using the digits

2 , 4 6 , 8 if no digit is repeated in a numeral? How

many if repetitions are allowed?

6. How many seven letter "words" may be formed using the letters

of the word STANFORD ? How.many if no letter is repeated?

7. How many different arrangements may be made for seven books

on a shelf if the books are each of a different size?

8. Four persons are to ride in an airport limousine having six

empty seats. How many different ways could they be seated?

35 I
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9. Three traveling salesmen arrived at a town having four hotels.

How many ways could they each choose a different hotel?

10. How many different combinations may be set on a lock having

twenty numerals if the combination is a 3-permutation?

11. How many different batting orders may a baseball team manager

form if he does not consider changing any but the last three

places in the order?

12. How many different ways may the letters a, b, c, d, e, f

be arranged with no repetitions so as to begin with ab in

each case?

13. How many three digit numerals having no repeated digits may

be formed from the digits 1 , 2 3 4 , 5 so that the

middle digit is 3 ?

14. How many 5-permutations including the letter C may be

formed from the letters A, B, C, D, E, F, G ?

15. How many ways may a photographer arrange four women and five

men in two rows if women must stand in the first row and men

in the second?

16. How many license plates may'be made using two letters of a

twenty-six letter alphabet followed by a four digit numeral?

(Zero may be used at any place in the numeral.)

17. How many ways are there for eight children to form a ring

around a May Pole?

18. If the number of ways to lay a set of tire weights in a line

is six times the number of ways they may be placed on the

tire rim, how many weights are there?

19. How many ways could King Arthur and eight of his knights sit

at the Round Table if one of the seats was a throne chair for

King Arthur only and there are eight other seats?

'3
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20. Find the exact numerical value of each of the following:

52!
(d) -571-27

(e) 3:jr(In.

15!
(f ) Tan?

21. Solve for the natural number m :

(g) 23!

(h) 74247

(i) 5(5! + 4!)

(a)
(n
ni

!2)
= 930, 2 < n. (c) P(n + 2,4) - 72. P(n,2) = 0.

(b) P(n,5) . 20 P(n,3) (d) P(n + 1,3) - 10 p(n-1,2)=i1

22. Simplify (n and m are natural numbers):

(a) (r111+ )3)

(b) "
- f

(n 2)!
n!-

(e) (n - m - 2)!(n - m - 1)(n - m) , m < n .

n[n! + (n - 1)!] , 1 < n .

(g)
1 1

(n - 1) 1 + E7 '

\" I:1221 Ll
ITF:=

1 < n .

(n + 2)! + (n - 1)! (n + 1)
(n - 1)!(n + a) , 1 < n .

23. Prove each of the following for natural numbers m .and n :

(a) P(n,3) + 3 P(n,2) + P(n,l) . n3 .

(b) (n + 1)[n n! + (2n - 1)(n - 1)! + (n 1)(n - 2)!]

(n + 2)! , 1 < n .

(c) P(n + 1,m) = (n + 1) P(n,m - 1) , m < n + 1 .

(d) P(n,m) = m P(n - 1, m - 1) + P(n - 1,m) , m < n .

(e) P(n,m) = P(n - 2,m) + 2m P(n - 2,m - 1) + m(m - 1)

P(n - 2,m - 2) , m < n - 2 .

356 [sec. 14-3]
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14-4. Combinations.

In this section we consider the following counting problems:

(i) Given a finite set having n elements, how many subsets

does it have?

(ii) Given a finite set having n elements, how many

1-element, 2-element, 3-element, , m-element subsets does it

have? (Here m iE any natural number not exceed1; n .)

Problem (i), being the easier, we consider first. Suppose

our set has the elements

a
1 '

a
2 ' "' ' a

n

The various subsets of (al , a , , an) may be formed by

going down the list of members and for each member either taking

it or not taking it. The process of forming a subset of

(a
1 '

a
2 ' '

a
n

) can therefore be described by giving an

ordered n-tuple, each of whose components is either T (meaning

or D (meaning "lon't take").

example, with n = 4 , our set is (al a2 , a3

and the quadruple (T , T , D , D) yields the subset

(al , a2 , a3 ,

(T , T , D , D)

(di a2 )

The quadruple (D , T , D , T) gives (a2 , an):

(al a2 , a3

(D , T , D , T)

a
2 '

3 5 7
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That each subset is described by such a "list of instructions" is-
illustrated by the following scheme. Given the subset (a3 ,

we have

(al , a2 , a3 ,

a3 , alt)

(D , D , T , T) .

Since each subset corresponds to exactly one of these ordered

n-tuples, the number of subsets of (al , a2 , , an) is the

same as the number of ordered n-tuples one can form from the

elements of the set (T , D) At the end of Section 14-2, we

found that the number of such ordered n-tuples is 2n . Thus we

have the following theorem.

Theorem 14-4a: There are 2n subsets of a finite set which

has n elements.

Note, in particular, two "subsets" which have been counted.

They are the extreme cases in which the n-tuple has all 'Ifs

(the "subset" corresponding to this n-tuple is the whole set); and

the case in which the n-tuple has all DIs (the "empty" or "void"

subset, containing none of the members of the given set).

Example 14-4a: Since there are 100 Senators, the total

number 01 Senate Committees which can be formed is 21 00 - 1 , if

we include the committee of the whole but exclude the committee

with no members. This number is

1,267,650,600,228,229,402 496,703,205,375'.

We now consider Problem (ii): .Given a finite set having n

elements, how many m-element subsets does it have, where m is

any natural number not exceeding n ? An m-element subset of a

set having n elements is often called a combination of the n

elements taken m at a time.

(sec. Vi-k]
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Let us look at some examples. Given the set (a,b,c) with

three members, we have the following non-empty subsets

(a) , (b) , (c)

(b,c) , (a,c) , (a,b)

(a,b,c)

This example is rather simple, but it tells us a good deal

about the general question. Thus a set having n elements has -n--

subsets each with 1 element (one such subset corresponding to each

element--the one in the subset). A set having n elements has n

subsets each with n - 1 elements (one such subset corresponding

to each element--the one not in the subset). And, of course,

there is only one n-element subset of a sct having n elements;

it is the whole set.

There are many different ways in use to denote the number of

m-element subsets of a set having n elements. Some are

(g) nCm , C C(n,m) .

The last one of these we adopt in this book.

We have just seen that

C(n,l) = n , C(n,n - 1) = n , C(n,n) = 1 .

Now let us consider the subsets of (a,b,c,d) . Here n = 4 .

We already know C(4,1) , C(4,3) , C(4,4) We have only to

determine C(4,2) The following scheme exhibits the 2-element

subsets of (a,b,c,d):

(a , b , c , d)

(a , b)

(a

(a ,

(b ,

(b ,

c)

c)

(c ,

d)

d)

d)

There are six. Thus C(4,2) 6 .

(see. 14-4]

350
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We may detect a connection between our current problem and

the permutation problems considered in Section l4-3 if we compare

our last list with Table 14-4a exhibiting the ordered couples

which may be formed with elements of (a,b,c,d) .

a

a (a,a) (a,b) (a,c) (a,d)

b (b,a) (b b) (b c) (b,d)

c (c,a) (c,b) (c,c) (c,d)

d (d,a) (d,b) (d,c) (d,d)

Table 14-4a

The subsets

(a,b) , (a,c) , (a,d) ,

(b,c) , (b,d) ,

(c,d)

are represented in Table 14-4a by the couples

(a,b) , (a,c) , (a,d) ,

(b,c) , (b,d) ,

(c,d)

appearing in the upper right-hand corner. But they are also

represented by the couples in the lower left of Table 14-4a:

(b,a)

(c,a) , (c,b) ,

(d,a) , (d,b) , (d,c) .

360
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Let us match these couples to the subsets as follows

(a,b):

(a,c):

(b,c):

(a,d):

(b,d):

(c,d):

(a,b) , (b,a)

(a,c) , (c,a)

(b,c) , (c,b)

(a,d) , (d,a)

(b,d) , (d,b)

(c,d) , (d,c)

809

Examing this arrangement, we see that each ordered couple to the

right of the line is a 2-permutation of the set at the left of its

row. For each such 2-element subset, there are therefore P(2,2).

2-permutations. Hence P(2,2) is the number of columns to the

riiiht Of the line. c(4,2) is the number of rows. Since the

total number of 2-permutations we can form from (a,b,c,d) is

P(4,2) we have

C(4,2) x P(2 . P(4,2) ,

and hence

14 2i 4 . 3 =
6

We now consider a set having n elements. C(n,m) denotes

the (unknown) number of its m-element subsets. Let us imagine a

table in which each of these m-element subsets determines a row.

In each of the rows we write the P(m,m) m-permutations of the

subset which identifies the row. The total number of entries in

this table is P(n,m) , the number of all m-element permutations

of the given set. Multiplying the number of rows and the number

of columns we have

C(n,m) P(m,n) = P(n,m)

n!
(n - m)!

or C(n,m) P m,m mf

3 6 1
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EXample 14-4b: Two cards are dealt from a deck of 52 cards.

How many ways may this be done?

Solution: We want the number of 2-element subsets of a

52-elemen set.

C(52,2) = (52)(51)
_ (26)(51) = 1326 .

Example 14-4c: How many 5-card poker handsOontaining the

ace of spades are possible wlth a 52-card deck?

Answer: C(51,4) - 4,N7t) . Using the table for log n1
1!

(following these examples) we find

log 4! = 1.3802 log 51! . 66.1906

log 47! . 59.4127 log 4!(47!) . 60.7929

log 410470 . 60.7929 log C(51,4) . 5.3977

hence C(51,4) 2.5 X 105 .

Example 14-4d: Show that C(n,m) = C(n,n - m) and interpret

this formula in tdrms of the subsets of a given set.

n! n!
Solution: C(n,n - m) _

(n - m)!(n - (n - ni))! = (n - m)!m!

C(n,m) .

C(n,m) is the number of m-element subsets of a set having n

elements. Each of these subsets may be paired with an (n - m)-

element subset of the same set; namely, the subset containing none

of the members of the original subset. This pairing shows that the

m-element subsets and the (n - m)-element subsets of a given set

are equally numerous; and that is exactly what the formula states,

362
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Example 14-4e: How many ways may an arbitrary natural number

n be represented as a sum of m natural numbers if we regard sums

differing in the order of their terms as different "representations"'

Solution: We look first at a special case: n = 5 , m . 3

Let us consider 5 "tallies" in a row

I I I I I

Our problem is equivalent to splitting this row of tallies into

three parts. Thus

I* 1 I*1 I

yields the sum 1 + 2 + 2 ;

1*1 11*1
yields 1 + 3 + 1, and

1*1 *III

yields 1 + 1 + 3 . Splitting the row of tallies into three parts

is accomplished by selecting 2 of the four spaces between adjacent

tallies. This can be done in c(4,2) , or 6 ways.

In the general case we have n tallies with n - 1 spaces:

1 I I 1 I

T -2 7 ' n : 2 n 1

Each representation of n as a sum of m terms corresponds to a

selection of an (m - 1)-element subset of the set of n - 1

spaces. The number is therefore

C(n - 1 , m - 1)

Example 14-4f: If a class has 20 students and the class-

room has 2 doors and 3 windows, how many different ways may the

teacher and the students leave in case of a fire if at least one

person goes through each of these exits?

363
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Solution: Since it's "every man for himself", we treat all

21 souls on an equal basis. The natural number 21 may be

written as a sum of 5 natural numbers (one term for each of the

exits) in C(21 - 1 , 5 - I) ways, regarding as distinct such

representations differing in the order of their terms.

C(21 - 1,5 - 1) = C(20,4) .

(The size of the answer justifies having a plan of egress ahead of

time, obviating numerous hasty decisions.)

Example 14-4g: gow many bridge hands of 13 cards contain

exactly 5 spades?

Solution: We want the number of ordered couples (A,B) ,

where A is a set of 5 spades and B is a set of 8 non-spades.

There are C(13,5) possibilities for A a'Ad c(39,8) possi-

bilities for B . Hence there are C(13,5) x c(39,8) such

couples.

C(13,5) x C(39,8) 7.92 x 1011 .

3 6 4
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COMMON LOGARITHMS OF n!

n log n! n log n! n log n! n log n!

0 0.0000 25 25.1907 50 64.4831 75 109.3946

1 0.0000 26 26.6056 51 66.1906 76 111.2754

2 0.3010 27 28.0370 52 67.9067 77 113.1619

3 0.7782 28 29.4841 53 69.6309 78 115.0540

4 1.3802 29 30.9465 54 71.3633 79 116.9516

5 2.0792 30 32.4237 55 73.1037 80 118.8547

6 2.8573 31 33.9150 56 74.8519 81 120.7632

7 3.7024 32 35.4202 57 76.6077 82 122.6770

8 4.6055 33 36.9387 58 78.3712 83 124.5961

9 5.5598 34 38.4702 59 80.1420 84 126.5204

10 6.5598 35 40.0142 00 81.9202 85 128.4498

11 7.6012 36 41.5705 61 83.7055 86 130.3843

12 8.6803 37 43.1387 62 85.4979 87 132.3238

13 9.7943 38 44.7185 63 87.2972 88 134,2683

14 10.9404 39 46.3096 64 89.1034 89 136.2177

15 12.1165 40 47.9117 65 90.9163 go 138.1719

16 13.3206 41 49.5244 66 92.7359 91 140.1310

17 14.5511 42 51.1477 67 94.5620 92 142.0948

18 15.8063 43 52.7812 68 96.3945 93 144.0633

19 17.0851 44 54.4246 69 98.2333 94 146.0364

20 18.3861 45 56.0778 70 100.0784 95 148.0141

21 19.7083 46 57.7h06 71 101.9297 96 149.9964

22 21.0508 47 59.4127 72 103.7870 97 151.9831

23 22.4125 48 61.0939 73 105.6503 98 153.9744

24 23.7927 49 62.7841 7h 107.196 99 155.9700

[sec. 14-4]
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FOUR- PLACE TABLE OF COMMON LOGARITHMS

0 1 2 3 4 5 6 7 8 9
10 0000 0043 oo86 0128 0170 021 2 0253 029h 0334 0374
11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755
12 0792 0828 0864 0899 0934 0969 1004.. 1038 1072 1106
13 1139 1173 1 206 1 239 1 271 1303 1335 1367 1399 1430
14 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732

15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014
16 2041 2068 2095 21 22 2148 2175 2201 2227 2253 2279
17 23014 2330 2355 2380 2405 2430 2455 2480 2504 2529
18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765
1 9 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989

20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201
21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404
22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598
23 3617 3636 3655 3674 3692 373.1 3729 3747 3766 3784
24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962

25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133
26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298
27 4314 4330 4346 4362 4378 4393 44o9 4425 4440 4456
28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609
29 4624 4639 4654 4669 ,4683 4698 4713 4728 4742 4757

30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900
31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038
32 5051 5065 5079 5092 5205 5119 5132 5145 5159 5172
33 5185 51 98 5211 5224 5237 5250 5263 5276 5289 5302
34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428

35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551
36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670
37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786
38 5798 5809 5821 5832 5843 5855 5866 :;877 5888 5899
39 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010

4o 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117
41. 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222
42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325
43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425
44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522

45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618
46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712
47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803
48 6812 6821 6830 6839 6848 6857 6866 6815 6884 6893
49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981

50 6990 6998 7007 7016 7024 7033 704 2 7050 7059 7067
51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152
52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235
53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316
54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396

36'6 [sec. 14-4)
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815

9

55 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474
56 7482 7490 7497 7505 7513 7520 7528 7536 7543 7551
57 71559 7566 7574 7582 7589 7597 7604 7612 7619 7627
38 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701
59 7709 7716 7723 7751 7738 7745 7752 7760 7767 7774

60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846
61 7853 7860 7868 7875 7882 7889 7896 .790 7910 7917
62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987
63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055
64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122

65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189
66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254
67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319
68 8325 8331 8338 8314 LI 8351 8357 8363 8370 8376 8382
69 8388 8395 8401 8407 8414 842o 8426 84-32 8439 8445

70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506
71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567
72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627
73 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686
74 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745

75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802
76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859
77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915
78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971
79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025

80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079
81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133
82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186
83 9191 9196 9201 9206 9212 9217 9222 9227 9252 9238
84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289

85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340
86 9345 9550 9355 9360 9365 9370 9375 9380 9385 9390
87 9395 9400 9405 943.0 9415 9420 9425 9430 9435 9440
88 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489
89 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538

90 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586
91 9590 9595 9600 9605 9809 9614 9619 9624 9628 9633
92 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680
93 9685 9689 969)4 9699 9703 9708 9713 9717 9722 9727
94 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773

9777 9782 9786 9791 9795 9800 9805 9809 9814 9818
96 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863
97 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908
98 9912 991,7 9921 9926 9930 9934 9939 9943 9948 9952
99 9956 9961 9965 9969 997,i 9978 9983 9987 9991 9996

3 67 [sec. 14-10
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Exercises 14-4

1. Using the set (a, b, c, d):

(a) Find the number of subsets.

(b) List the 3-element subsets.

(c) List the 3-permutations for each of the 3-element

subsets.

(d) Find the value of C(4,3) .

2. Evaluate each of the following:

(a) C(10,2) (d)

(b) c(8,3) (e)

(c) C(12,5) (0

C(25,24) c(8 5)
(g)

C(12,10)

(h) ;IgetiC(100,98)

3. Calculate the value of log 100! to four decimal places.

4. A student is instructed to answer any eight of ten questions

on an examination. How many different ways are there for him

to choose the questions he answers?

5. There are ten entries in a round-robin tennis tournament.

How many matches must be scheduled?

6. How many distinct lines are determined by fifteen points on

a plane if no three of the points are collinear?

7. How many triangles are determined by eight points on a plane

if no three of the points are collinear?

8. A seed company tests its tulip bulbs in sets of sixteen.

Four bulbs are selected for planting from each set. If all

four grow, the remaining twelve are sold with a guarantee

that at least eight of them will grow. How many ways can

the four bulbs be selected for test planting from a set of

sixteen?

9. How many committees of four members may be formed from a set

of nine possible members?

10. How many committees consisting of two Democrats and two

Republicans may be formed from a set of seven Democrats and

six Republicans?

30'8
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11. How many parallelograms are determined by a set of eight

parallel lines intersecting another set of five parallel

lines?

12. A basketball squad consists of four centers, five forwards,

and six guards. How many different teams may the coach form

if players can be used only at their one position?

13. From a set of twenty consonants and the five vowels, how

many "words" may be formed consisting of three different

vowels and two different consonants if one of the vowels

must be a ?

14. How many five letter "words" containing two vowels and three

consonants may be formed from the letters of the word

LOGARITHM ?

15. Referring to the array given in Exercise 14-1, 1, determine

the number of ways one can spell LOGARITHMS starting from a

given one of the Las, going right or down for the next letter

each time, and ending at S. (Suppose the given L lies in

the m
th row from the bottom; then it is necessary to move

down m - 1 times between successive letters.) Check your

result by using the formula you obtain to solve Exercise

14-1, 1 "again."

Using the table for log n: find approximate answers for

Exercises 16, 17, , 22.

16. A sample of five items is to be selected from a set of one

hundred. How many different samples mav be formed?

17. How many different poker hands of five cards each can be

formed from a deck of fifty-two cards?

18. How many samples of ten units may be formed from a set of

one hundred light bulbs?

19. How many subsets of five cards containing exactly three aces

may be formed from a deck of fifty-two cards?

20. How many bridge hands can have two six-card suits?

21. How many bridge hands have one seven-card suit and three

two-card suits?

22. Row many bridge hands have a "5-4-3-1" distribution?

[sec. 14-4]
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23. If C(n,12) = C(n,8) , find the value of C(n,17) .

24. If C(18,4) - C(18,m + 2) = 0 , find the value of C(m,5) .

25. Prove Pascal's Theorem: C(n,m) = C(n 1, m - 1)

+ C(n - 1,m) , 1 < m < n - 1

. Show that Pascalla Theorem may be illustrated by the follow-

ng table (called Pascal's Triangle), where entries in the

table are of the form C(n,m) for 1 <

the table through the line for n . 10 .

0

m < n , and extend

1 1

1 2 1

1 3 3 1

27. Prove that C(n,n - 2) . C(n - 1,n - 2) + C(n - 2,n - 3)

+ + C(2,1) + C(1,0), if 3 < n .

14-5. The Binomial Theorem.

We are all familiar with the formula

. 2(x + y)
2

x + 2xy y
2

.

Higher powers of the binomial x + y pay be expressed as poly-

nomials in x and y by multiplying each result in turn by

x + y . Thus

(x y)3 = (x + y)2 (x + y)

, 2 2.,
kx + 2xy + y + Y)

x 3 + 2x 2y Xy X
2
y + day

2
+ y

3

x
3

+ 3x
2
y + 3xy 2

+ y
3

,

370
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/ t
(x + y)

4
= lx + Y/ + Y)

. (x3 + 3x2y + 3xy2 +.1,3)(x Y)

x + 3x
3y + 3x

2
y
2 + xy 3 x 3y

+ 3x
2
y
2
+ 3xy

3
y

. x4 + 4x3y + 6x2y2 + 4xy3 + y4

Proceeding this way, we may derive the expansion of each higher

power, (x + y)
n

, in a step-by-step fashion.

However, it is possible to apply our theory of combinations

to obtain the expansion of (x + y)n where n is an arbitrary

natural number. Thus we may avoid the step-by-step process and

write out the entire expansion for any given n without first

determining the expansion for each smaller value of n The

salring, therefore, in calculation is very great. Suppose, for

example, that you need to know the first 6 coefficients in the

expansion of (x +
y)100

. (For reasons we cannot explain here,

such questions often arise in scientific and sociological problems.)

Using the formula we shall derive,you would not have to find first
.100

all the coefficients in all the expansions up to (x + y) ; the

6 coefficients you wanted could be written down without any

preliminary calculations.

Before we attack the general problem, we x'acast it in a

simpler form. Note that

D7r. xna :x)n
(x + y)n (x(1

XIJ I. Xi

If we set z
'

our problem amounts to determining the expansion
x

of xn(1 + z)n . This can be done if we determine the coeffiCients

in the expansion of (1 + z)n . For all we need do with this ex-

pansion is multiply each term by xn . Finally replacing z by

Z. we can obtain the expansion of (x + .

371
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We turn now to the expansion of (1 + z)n . In order to

obtain the coefficients in this expansion, we shift our attention

to the product

(1 + z1)(1 + z2)...(1 +'zn) .

Note that when z
1

. z2 zn = z , the product reduces to

(1 + z)n since it has n factors.

We look first at some examples. For n . 2 , we have

(1 + z1)(1 + z2) . 1 + (z1 + z2) + z1z2 .

For n . 3 :

(1 + z1)(1 + z2)(1 + z3) . 1 + (zi + z2 + z3) + (z2z3 + z1z3

+ z1z2) + z1z2z3
'

For n = 4 :

(1 + z1)(1 + z2)(1 + z3)(1 + . 1 + (z1 + z2 + z3 + z4)

+ (z1z2 + z1z3 z1z4 + z2z3 + z2z4 z3z4)

(z2z3z4 z1z3z4 + Z1z2z4 + z1z2z3)

+ z1z2z3z4

Studying these examples gives the clue to the general pattern.

For n . 2 , consider the set (z1z2) Its non-empty subsets are

(zi) , (z2) and (z1z2) ;

each of which corresponds to a term in the expansion:

(z1) (z2) (z1z2) ,

z
1 '

z
2 '

3 i
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Similarly for n = 3 We list the non-empty subsets of

(z, z2 z3) and the terms appearing in the expansion which

correspond to them:

(z1) (z2) (z3) , (z2,z3) , (z1,z3) , (z1,z2) (z1,z2,z3)

zl , z2 z3 z2 Z3 Z1 Z3 , Z
1

Z
2 ,

z1 Z2 Z3

The expansions themselves (at least for n . 2 , n . 3) are the

sums of the terms listed, plus the extra term "1" The same

pattern holds in the case n = 4

what happens in these cases, when z, , , z
3

, etc., arez2

all replaced by z ?

The terms contributing the first power of z to the sum are

those corresponding to 1-element subsets; those contributing the

second power of z to the sum are those corresponding to 2-element

subsets; etc. Thus the number of zfs (and hence the coefficient

of z in the expansion) is C(n,1); the coefficient of z2 is

C(n,2) ; and for n > 2 , the coefficient of z
3 is C(n,3) .

These 'observations are valid at least when n . 2 , n . 3 , n = 4 .

The binomial theorem asserts that this is the case for n an

arbitrary natural number.

In the general case, expanding the product

(1 + z1)(1 + z2)...(1 + zn)

yields terms of the following forms:

1

zl , z2 , ,

z1z-,.z1z3 3 Zn...1Zn

Z1Z2Z3

zn

zn

'3 7 3

[sec. ]4-5)
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At the right of each line we give the number of terms in the line.
Replacing z1 , z2 , zn each by z yields the terms

1

z,z, , Z C(n,l)
2 2

z
2
,z , , z C(n,2)

3 3z z z
3

C(n,3), ,

z
n

C(n,n)

Adding these terms we have our expansion:

(1 + z)n 1 + C(n,l)z + C(n,2)z2 + C(n,3)z3 + + C(n,n)z

or, nore compactly,

(1 + z)n C(n,m)zm ,

m=0

if we agree to write C(n,0) = 1 .

Returning to our original question regarding the expansion
of .(x + y)n , we have, putting in place of z :

or

(x
)n xn(1

xi
2

f)xn(1 + C(n,l)X + C(n,2)21,s-1 + C(n,n)
)c xn

xn + C(n, 1)xn-1y + C(n,2)xn-2y2 + + C(n,n)yn ,

(x + y) n = xn (1 + Z)n
x .

=
n

C(n,m)
xmm=0

EC(n,m)x
n-m

y
m

.

m=0

This is the binomial theorem.

[see. 14-5]
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Theorem 14-5a: If n is any natural number, and if x and

y are any real (or complex) numbers, then

(x y)
n

= C(n,m)x
n-mym

M=0

= xn C(n,l)xn- ly + + C(n,n)yn .

Example 14-5a:

(x y)5 . x5 + C(5,1)x4y + C(5,2)x3y2 + C(5,

+ C(5,4)xy4 C(5,5)y= .

. x5 + 5xily + 10x3y2 + 10x2y3 + 5xy4 + y5 .

Example 14-5b:

(x2 3,5)4 (x2)4 4.(x2)3-y-) 6(x2)2

+ 4(x2)(-3 5)3 + (-3,5)4

= x
8 - 12x

6.5+ 54x y - 108x
2y.,fy+ 81y

2
.

Note that if we take x = y = 1 in Theorem 14-4a, we obtain

2n . (1 + 1)n =

111=0

C(n,m)ln-mlm

Thus the sum of the number of

0-element subsets

1-element subsets

2-element subsets

C(n,m.; .

m.0

n-element subsets (C(n,n))

of a set having n elements is 2n .
Note that we have already

seen that 2n is the total number of subsets .(including the empty

.15

[sec. 14-53
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set and the whole set) of a set with n elements. Thus the

binomial theorem ties together our solutions of the two problems

we considered in Section 14-4. (Cf. The solutions of Exercises
14-1,1 and 14-4,15 .)

Exercises 14-5

1. Find the expansion for each of the following:

(a) (x - y)4 (g) + z)6

(b) (x - y)5 (h) (x -

(c) (a b)5 (i) (x2 + x)8

(d) (a + b)7 (j) (c2 - 2cd)9

(e) + v)6 (k) (x-1
2y-2)6

(f) (r - 2s)8 (1) (-27 - 37)5
\ x y '

2. (a) What is the sum of the a,b exponents in the kth term

in the expansion of (a + b)n , n,k in N and k < n ?

(b) How many terms are there in the expansion of (a + 17)-)73

In (a + b)n , n. in N ?

(c) Which term in the expansion o (a + b)32 is the

middle term?

(d) For which values of n will the expansion of (a + b)n ,

n in N , have no middle term?

(e) . Give the C(n,m) form of the coefficient of the twenty-

first term in the expansion of (a + b)35 .

(f) Which terms in the expansion of (a + b)72 have their

coefficients equal to the coefficient of the thirty-

first term?

(.g) If the coefficients of the sixth and sixteenth terns in

the expansion of (a + b)n , n in N , are equal,

what is the value of n ?

[sec. 14-5]
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(h) If the coefficients of the fourth and sixteenth terms in

the expansion of (a + b)n , n in N , are equal, find

the middle term in the expansion.

3. (a) Find the seventh term in the expansion of (a b)15 .

(b) Find the fourth term in the expansion of (x - 5)13

(c) FL:',,d the twelfth term in the expansion of (2x - 1)13

(d) Find the middle term in the expansion of
(33i. 1)10

(e) Find the middle term in the expansion of ( ---c - x2)
12

x2 14
(f) Find the eighth term in the expansion of (1 - .

(g) Find the term having b7 as a factor in the expansion
b)10

(h) Find the term having y5 as a factor in the expansion

of (x2 - y)9 .

(i) Find the term having x14 as a factor in the expansion

of - x2)10 .

(j) Find the term having y
3 as a factor in the expansion

1
7,9

of (x - 2y ) .

(k) Find the term NOT having a factor of x in the

expansion of (x2 -

4. Find the numerical value for each of the following to four

decimal places:

(a) 1.024 (Hint: 1.02 . 1 + 0.02) (e) 1.
9810

(b) 1.0212

(c) 0.9812

(d) 2.0110

I 7
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14-6. Arrangements and Partitions.

We have considered the permutations and combinations of

elements of a given finite set. In this section we consider

another type of counting problem, one whose solution'can be based

on our previous results.

Example 14-6a: How many distinguishable arrangements are

there of the letters in the word "loon" ?

Solution: If the word were "loan" instead of "loon", the

methods discussed in Section 14-3 would apply directly and give

the answer P(4,4) , i.e., 24 . However, we may expect that the

answer to the present problem is much smaller, since we have
duplications. Thus the permutations "loan" and "laon" correspond

to the indistinguishable arrangements "loon" and "loon" in our

current problem. Suppose, indeed, that we conSider a compldte

list of the 4-permutations of the set (1,o,a,n) . These pdrmuta..

tions may be paired with one another as follows:

loan , laon;

nloa , nlao;

anlo , onla;

oanl , aonl;

olan , alon;

nola , nalo;

anol , onal;

lano , lona;

oaln , aoln;

noal naol;

lnoa , lnao;

alno , olna .

In each of these pairs the letter "I" occupies the same place, the

letter "n" occupies the same place, but the letters "o" , "a" are

interchanged. Replacing each "a" here by an "o" we see that each

of these pairs yields a pair of indistinguishable arrangements of

the letters of "loon". Thus the number of arrangements of the

letters of "loon" is Just half the corresponding number for "loan".

Our answer is therefore 12 .

This e;:ample provides the key to the solution of the general

problem of determining the number of arrangements of a list con-

taining repetitions.

(sec. 14-6]
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Corresponding to each arrangement of the letters of "loon"

we have P(2,2) permutations of (1,o,a,n) arising from permuta-

tions of (o,a) .

Consider the problem of counting the number of arrangements

of the 12 letters of "divisibility". Here the letter "i" occurs

5 times, but each of the other 7 letters occurs just once. Now

P(12,12) is the number of arrangements of the elements of a set

having 12 elements such as (d,a,v,e,s,i,b,o,l,u,t,y) Let us

write A for the (unknown) number of different arrangements of the

letters of "divisibility". Corresponding to each of these arrange-

ments are P(5,5) permutations of the letters d,a,v,e,s,i,b,o,l,

u,t,y .

Hence A x P(5,5) . P(12,12)

P(12,12) 12!
and A _ 12 x 11 x 10 X 9 x 8 .

P(5,51

Suppose, in general, we have a list_of n items, m of

which are the same but no two of the remaining n - m are the

same. For example

x,x,y,z,x,u,x,v. (n . 8 m . 4)

Corlasponding to the given list, let us consider a second list in

which the duplicated items are distinguished (say, by subscripts).

In our example,

xl , x2 , y z x3 , u , x4, v .

The number of arrangements of the second list is P(n,n) . Each

arrangement of the first list corresponds to P(m,m) arrangements

of the second. If A is the number of distinguishable arrange-

ments of the original list,

A P(m,m) P(n,n)

n!
so m!

[sec. 14-6]
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Consider the corresponding problem for a list of n items,
m
1

of one kind, m
2

of a second m
3 of a third kind, etc., witl.

n ml + m2 +

If A is the number of distinguishable arrangements, then

iln2! nk! A . n! ,

SO A - m in
1'

nJ

This number is written as

)

n!

;lc ml! m2!

Wu note two special cases. If ml = m and m2 .

as.in the previous examples, we have

n! n!A -
m!1! 1! iT '

so that our earlier formulas are special cases of the general

formula. If k . 2 and m
1

m , then m
2

n - m and

n!
_ C(n,m) (

n
) .

mk) m./(n - m)

Example 14-6b: How many distingui:Alable arrangements are
there of the letters in MISSISSIPPI ?

Solution: There are 11 letters, 4 of one kind (I) , 4

of another (S) , 2 of a third (P) , and 1 other (M)

formula gives

11!
.._ 34,650 .

( ) 2 ( 2 fl ( 1 )

3 8 0

[sec. 14-6]
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Exercises 14-6a

1. How many different six digit numerals may be written using

the.digit 5 once, a 4 three times, and a 3 twice?

2. How many five symbol code "words" may be formed 1.1ing three

dots and two dashes?

3. How many distinct "words" may be formed as arrangements of

the letters of PARALLELEPIPED ?

4. Suppose that on one dark day in a certain hospital, four

sets of identical male twins, two sets of identical female

twins, nine males (single births), and eleven females

(single births) are born, and cheap ink is used on their

name-tags. The next day (even darker) the ink fades away.

How many ways is it possible to mix the children up? (Use

log n! table of Section 14-5 to approximate the answer.)

5. How many different ways may the letters of QUARTUS be

arranged so that the letter u follows the letter q ?

u. How many different arrangements of the letters of PALLMALL

may be formed so that all of the lts are not together?

7. How many different ways may the letters of QUISQUIS be

arranged so that each q is followed by a u ?

8. How many three letter arrangements of the letters of SNOOP

may be formed? (Hint: consider cases as o the three letter

word having 0 , 1 , or 2 Ots.)

9. How many different arrangements of four letters may be made

from the letters of SPOOL ?

Partitions of a Set.

By a partition of a set A we mean a collection of subsets

of A having the properties

(i) no pair of the subsets share any members,

(ii) the union of all the subsets is A

Thus each element of A is in one and only one of the subsets.

The subsets themselves are called cells of the partition.

[cec. 14-6]
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Example 14-6c: The two sets:

(1) the set of even natural numbers,

(2) the set of odd natural numbers,

form a partition of the set of natural numbers. Its cells are the

two sets listed. The three sets:

(1) the set of positive real numbers,

(2) the set,of negative real numbers,

(3) the set whose only member is zero,

form a partition of the set of real numbem.

Example 14-6d: The set (a,b,c) has the following partitions

(and no others without empty cells):

((a) , (b) (0); ((a,b) (0); ((a,c) , (b));

((c,b) , (a)); ((a,b,c)) .

Since a partition is a collection, or set, whose members are

themselves sets, we are obliged to be rather generous with our

brackets when writing partitions. In the interests of economy (of

ink) and ease of reading, we introduce an alternate notation and

write, for the partitions listed in Example 14-6d:

[a;b;c] [a,b;c] , [a,c;b] , [c,b;a] , (a,b,c] ,

respectively. If we need speak only of the cells, without

exhibiting the elements in them, we shall write--as usual--

(A
1 '

A
2 ' '" '

A
k

)

for the partition of A whose cells are Al , A , , Ak .

(Here Al , A2 , , Ak are certain subsets of P )

When we consider k-permutations of the set

(A1 , A2 , , Ak)

[sec. 14-6]
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we deal with ordered k-tuples such as

(A1 , A2 Ak) ,

(A2 , Al , , Ak) ,

(Ak , A, , , A2) .

Each of the k-permutations of a given partition of a set into k

ce113 will be called an ordered partition of the set. If in the

ordered proo'Ation (A1 , A2 , , Ak) there are nl elements

in Al , n2 elements in A2 , , nk elements in Ak , we

shall call this partition an (nl; n2 ; , ; nk) partition.

The problem we now put is this: Given a finite set A ,

having n elements, how many (n1; n2; ...., nk, partitions

(A1 , A2 , , Ak) of A are there? Since Al has nl

elements, A2 has n2 , , Ak has nk . We have, in view

of the defining properties (i) , (ii) of a partition

nl + n2 + + nk = n

'We shall see that we have really solved this problem already.

All we must do to see this is to rephrase it appropriately. First,

however, we look an example.

Example 124-6e: Some of the (3;2;2) partitions of

(a,b,c,d,e,f,g) are

[a,b,c;d,e;f,g] , [a,b,d;c,e;f,g] , [a,b,d;c,f;e,g] .

There are, of course, many more. Notice, however, that

[a,c,b;d,e;f,g] , [a,b,d;e,c;g,f1 , [d,a,b;c,f;g,e]

are, respectively, simplyother ways of writing the same three

partitions as before. Consider, for example, the first in earth of

these lists. Using the more elaborate notation, these are

((a,b,c) , (d,e) , (f,g)) and ((a,c,b) , (d,e) , (f,g)) .

3 8 3
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But the sets (a,b,c) and (a,c,b) are equal for they have the

same elements. Similarly for the other sets in each of these

partitions.

This example gives away the secret! The various cells are

unchanged if their elements are rearranged--so far as their

relationship to the partition itself is concerned, elements in the

same cell are "alike". Thus permuting the elements in a given

cell has no effect on the parfition itself. Hence each ordered

partition

(a,b,c;d,e;f,g)

corresponds to 3! x 2! x 21 permutations of the whole set.

Since there are 7t permutations of the given set there are

7!
3,2,2!

(3;2;2) partitions of it.

We may explain this result another way. We want an ordered

triple of subsets where there is no duplication of elements. We

can "choose" the first cell (which has 3 elements) in C(7,3)

ways. Sf.nce no pair of cells may share any members, we have only

C(4,2) "chc,ices" for the second cell (which has 2 elements).

Finally there are C(2,2) "choics" for the third cell.

Altogether, such an ordered partition may be formed in

c(7,3) x C()4,2) x C(2,2)

7! 4! 2!
or

3!1J! x "2!2! x 2.10!

or

4ays.

7!

In the general case, the number of (n1;n2; ; nk)

partitions of an n-element set (where n = nl + n
2 + + n

k
) is

n!
n ! n n
1 2' k'

3 :3 i
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Example 14-6f: There are ten entries in an elimination

tennis tournament. How many ways may the first round of matches

be scheduled?

Solution: We want the number of (2;2;2;2;2) partitions

of a set with 10 elements (the 10 entries) . This number is

10)
, or, approximately, 1.1 x 10 5

.

(2,F

Example 14-6g: Given a set having n elements, how many

(m;n - m) partitions does it have?

n!Answer:
m. n - m .

This is C(n,m) That it should be

C(n,m) may be seen if we note that the first cell has m elements,

and all the other elements--if any--are in the second. Thus the

(m;n m) partitions of an n-element set are paired with the

subsets of the given set.

Exercises 14-6b

1. Eight men attend a sales convention and find they are to be

in four double rooms. How many ways may they be assigned to

these rooms?

2. How many'subcommittees of two, three, and three members may

be formed from a committee of eight members if each committee

member can be on one and only one subcommittee?

3. In how many ways can 10 indistinguishable blue tickets and

30 indistinguishable red tickets be distributed among 40

people if each person is to receive exactly one ticket? (Use

log n! table of Section 14-4 to approximate the answer.)

4. How many ways are there to arrange eight coins in a row so

there will be three heads and five tails showing?

8 5
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5. How many sets of bridge hands can be dealt to four players

from a fifty-two card deck? (Use log n! table.)

6. (a) In how many ways can 6 people be partitioned into

three teams each consisting of two people?

(b) In how many ways can 12 people be partitioned into

four teams each consisting of three people?

(c) Generalize.

14-7. Selections with Repetition.

Suppose you are in a store having n kinds of items and

more of each kind than you can afford to buy. How many different

selections of m items can you make?

This problem differs in two ways from the 'arrangement"

questions we have considered. For one thing, we no longer take

account of the order in which the.items are "selected". For

another, we suppose that--from the point of view of our resources

--the supply of each kind is unlimited. The last supposition is

for the sake of simplicity; without it the problem is much more

difficult.

We begin with m = 1 . The answer here is just n , for if

we may select only one item our selection reduces to selecting one

of the n kinds. The number of ways is then C(n,1).

For m . 2 , the question is more interesting. The two items

may be alike or they may be different. But in either case, their

"order" of selection is irrelevant.

Let us pair each of the kinds (of which there are n ) ;Jith

the numbers 1, 2, 3, ..., n . Our problem is then to determine

the number of unordered couples of the numbers 1, 2, ... , n .

We look at the table of the ordered couples of pairs of elements

of [1, 2, ... , n) .

336
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1 :2 3

1

2

3

n

(1,1)

(2,1)

(3,1)

000

(n,l)

(1,2)

(2,2)

(3,2)

o .

(n,2)

(1,.3)

(2,3)

(3,3)

0
0

(ny3)

(1,21)

(2,4)

(3,4)

.

(n,4)

000 (1,n)

(2,n)

(3,n)

.

(n,n)

The couples on the diagonal are those representing the

selection of 2 items of the same kind; those not on the diagonal,

the selection of 2 Items of different kinds. But each couple

below the diagonal represents the same selection as one above the

diagonal. Suppose we erase all couples below the diagonal. Then

we have just one couple for each of the selections we want to

count. Their number is given by

n(n + 1)
1 + 2 + 3 + + n 2

and is therefore C(n+1, 2):

, Before we go on to the case m = 3 , let us observe that we

have counted the number of ordered couples (a,b) of the form

1 <a<b<n, i.e., whose first component does not exceed its_
second component. This is another way of saying we count the un-

ordered couples which may be formed from a set of n elements.

For m . 3 , we want the number of ordered triples (a,b,c)

with 1 < a < b.< c < n . As when m = 2 , the chain of inequali-
-

ties rules out each of the permutations of these triples but one.
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Suppose we have made one selection, say a, 1 < a < n. We

have still to make two more, with a<bc<n. Selecting
b,c is equivalent to selecting two numbers from the set

(a, a + 1 , , n)

which has (n - a) + 1 members. Thus for each selection of a ,

n - a + 2x1 < a < n , there are (
) ways to select b and c

2
satisfying a < b < c < n. Since no pair of triples with

different first components can be the same (the first component

being the least component), our second fundamental idea (Section

14-1) tells us the total number of selections is given by

S(n,3) = C(n+1,2) + C(n,2) + C(n-1,2) + C(4,2)

+ C(3,2) + C(2,2).

Using Pascal's Theorem (Exercise 14-4, 25)

C(3,2) + C(3,3) = C(4,3)

and the fact that C(2,2) = C(3,3), we have

C(3,2) + C(2,2) = C(4,3) .

Hence S(n,3) = C(n+1,2) + C(n,2) + C(n-1,2) + + C(4,2) + C(4,3)

= C(n+1,2) + C(n,2) + + C(5,3)

-------- ------
= C(n+1,2) + C(n+1,3)

= C(n+2,3)

The pattern emerges:

S(n,l) = C(n,l)

S(n,2) = C(n+1,2)

S(n,3) = C(n+2,3) .

[sec. 14-7]
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S(n,m) C(n+ms-1,m) .
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The general formula may be obtained by carrying on the same line

of reasoning we have used in the cases m 1 , m = 2 , m = 3 .

Example 14-7a: Suppose you have 5 apples to give to

teachers. How many ways can you do this?

Solution: Here m = 5 and n . 3 , for you are to select

the teachers receiving the 5 items. The answer is given by

7N 7.6
S(3,5) = 0(7,5) = (2) 1.2 21 .

Example 14-7b: Suppose a millionaire has 50 heirs and

legatees. If he cuts none of them off without a cent and,has just

one million dollars to bequeath (after taxes and legal fees), how

many different wills could he write?

Solution: n = 50 , m . 10
8 (cents) . The number of wills is

0000100/,,49)
therefore k which is approximately 7.9 x 10196

50

This represents quite a few decisions.

Example 14-7c: How many ways may the natural number n be .

written as a sum of m non-negative integers, if we distinguish

between sums differing in the order of their terms. (Compare

Example 14-4e.)

Solution: When we considered the problem of representing n

as a sum of m natural numbers we selected (without repetition)

m - 1 spaces between n tallies arranged' in a row. Extending

this idea, selecting these spaces with repetitions will give us

sums with 0 as a term. Thus, for n = 5 m = 4

1 17171

the selection (1;1,3) gives = 1 0 2 4. 2 . However to

[sec. 14-7]
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allow for the first and last terms being zero, we should introduce

2 more spaces: one before the first tally and another after the

last:

I I I I I

T

Thus, now, (1,1,3) represents

5 = 0 + 0 + 2 + 3

and (1,3,6) represents

5 . 0 4. 2 + 3 + 0 .

With these extra spaces, we now have n + 1 spaces in the

general case, of which we are to select m - 1 allowing

repetitions. The number 'of such selections is given by

S(n + 1 , m - 1) . C[(n+1) + (m-1) - 1, m-1] = C(n+m-1) m-1) .

Exercises 14_7

1. A post office has ten types of stamps. How many ways may a

perSon buy twelve stamps?

2. How many ways are there to select five packages of cheese

from a bin containing ten kinds?

3. A piggy bank is passed to five people who place in it one

coin each. If the-coins are pennies, nickels, dimes,

quarters, half dollars, or silver dollars, how many sets of

coins might there be in the bank, assuming it to be empty at

the start?

If the faces of two dice are numbered 0 , 1 3 7 , 15 , 31 ,

how many different totals can be cast?

5. How many dominoes are there in a set ranging from double

blank to double twe]ve?

6. Delete the last eleven words of Example 14-4f and answer the

question thus formed.

[sec. 14-7]
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lh-8. Miscellaneous Exercises.

1. How many different arrangements may be formed from the letters

of the word MADAM ?

2. How many committees of seven persons may be formed from a set

of ten persons?

3. How many distinct lines are dezermined by twelve points on a

plane if no three of the points are collinear?

4. How many diagonals can be drawn in a convex polygon of

n-sides?

5. How many permutations of the letters of COMPLEX will end'

in X ?

6. How many of the 5-permutations of the letters A, B, C, D, E,

F, G will have A at the beginning or at the end?

7. How many different ways may exactly three heads show in a

toss of five coins?

8. How many ways are there to seat ten persons around a table,

if a certain pair of persons must sit next to each other?

9. How many four digit numerals may be formed from the set

(1 , 2 , 3 , , 8 , 9) if no digits may be repeated and

the numbers they represent are odd.

10. How many "words" containing three consonants and two vowels

may be formed from a set of ten consonants and the five

vowels?

11. How many five letter "words" may be formed from a twenty-six

letter alphabet if the first letter is not repeated, but

repetitions may occur in the other four places?

12. How many arrangements of three men and three women may be

made at a round table if the men and women must sit

alternately?

13. If all possible pairs of numbers, repetitions of digits not

permitted, are selected from the set (1 , 2 , 3 , 4, 6) , in

how many cases will the sum be even?

391
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14. A bag contains five red balls, four white balls, and three

black balls. How many different ways may three balls be

drawn if each ball is to be a different color?

15. How many different hands containing three queens and a pair

may be formed from a deck of fifty-two cards?

16. How many different signals may be formed from two red flags

and three blue flags if any four of the flags are hoisted on

a flagpole in a vertical line and the flags differ only in

color?

17. How many ways may three boys and three girls stand in line if

no two boys stand next to each other and no two girls stand

next to each other?

18. How many ways are there to arrange a set of fifteen different

books by size on a shelf if five of them are large, seven are

medium size, and three are small?

19. How many three digit numerals are there that do not contain

the digits 8 or 0 ?

20. How many ways may nine hooks be clipped onto a steel ring?

21. How many ways are there to seat seven persons in a row if two

of them will not sit next to each other?

22. If a set of six different books is used, how many ways could

three or more of them be arranged on a shelf?

23. How many ways are there to form a dinner party for seven

persons from a set of ten persons if a certain pair of the

ten will not attend the same dinner party?

24. How many ways may four boys of unequal heights stand in a

line if no boy stands between two taller ones?

25. How many 5-permutations of the letters a,b,c,d,e,f,g do

not contain b ?

26. How many ways are there for a man to invite one or more of

his six friends to his home?

27. Find the number of arrangements of the letters of BOULDER

if no two vowels are together.
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28. How many three digit numerals representing even numbers

greater than 234 may be formed using the digits 1 , 3 , 4

5 6 , 8 , 9 .with no repetitions of digits permitted?

*29. How many three digit numerals representing even numbers

greater than 234 may be formed using the digits 1 , 3 ,

4 5 6 , 8 9 ?

*30. How many three digit numerals representing even numbers

greater than 234 may be formed using the digits 2 , 3 , 4 ,

5 , 6 , 8 , 9 if repetitions of digits are permitted? If

repetitions of digits are not permitted?

31. Suppose n tickets, numbered-serially, are printed for a

raffle. Suppose they are all sold and each purcha3er

counterfeits (m - 1) copies of his stub and sneaks them

into a bowl (so that each of the n numbers appears on m

tickets in the bowl). Two prizes are to be awarded and hence-

two stubs must be drawn.

(a) How many ways is it possible to draw two stubs?

(b) How many of these ways result in both numbers being the

same?

(c) The ratio of tl.e answer in (b) to that in (a) indicates

the chances of exposing one of the counterfeiters.

Compute this ratio for each pair (n,m) with n,m in

the ranges 1 < n < 5 , 1 < m < 5 , m,n in N .

(d) What conclusions do you draw concerning the risk of

being caught if

(i) n increases for fixed m ,

(ii) m increases for fixed n ?
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Chapter 15

ALGEBRAIC STRUCTURES

15-1. Introduction.

During our course of study of this book, we have met several

number systems: the systems of the natural numbers, the integers,

the rational numbers, the real numbers and the complex numbers.

In each of these systems we saw that our concern was with the

following:

(1) Objects or elements, here numbers;

(2) Two operations, addition and multiplication;

(3) Laws satisfied by.these operations, such as the

commutative and associative laws of addition and

multiplication and the distributive law.

If we stop and reflect for a moment, we see that many of the

algebraic computations which we carried out were independent of

the nature of the numbers with which we were operating and

depended solely on the fact that the operations in question were

subject to laws respected in each system. Thus, for example, if

we consider the identity

15-la a2 - b2 . (a 4. b)(a - b)

and think of this assertion as applying to a and b taken as

(1) integers,

(2) rational numbers,

(3) real numbers,

(4) complex numbers,

we see that, if we established the Identity 15-la at the earliest

stage for integers and observed
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(1) that the verification depended only on the distributive

law, the associative laws and commutative laws and

properties of the additive inverse, and

(2) that each of the laws and properties invoked were in

force for the complex number system,

then it would be unnecessary t6 repeat the verification for the

case where a and b are complex numbers.

Without such laws algebraic computation as we know it would

cease to exist. The whole source of algebraic computation is to

be found in these laws.

We can, if we like, seek to abstract what is algebraically

essential and common to several specific number systems and

develop algebraic results which hold for each of these systems

without having to repeat our work in each special case. This

approach is of great importance in many parts of modern mathe-

matics, especially in modern higher algebra which is sometimes

also called abstract algebra.

What is the nature of the fundamental algebraic operations

which we have met? Let us take the addition of real numbers. We

are given real numbers, say a and b , in order, or, if we

like, the ordered pair (a,b) . The operation of. addition assigns

to the ordered pair (a,b) a unique real number which we desig-

nate a + b . The words "assigns" and "unique" give the secret

away. The operation of addition (of real numbers) is a function

defined for each ordered pair of real numbers which assigns to

each such ordered pair (a,b) of real numbers a real nuMber, the

sum a + b . It should be observed that while most of the

functions which we have met assigned real numbers to real numbers,

the function concept is an extremely general one and we may

certainly consider a function f which assigns to each element

a of a given class P. a unique element (labelled f(a)) of a

given class B . In the example of addition of reals, the cias's A

9 5
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is the set of ordered pairs of real numbers and the class B is

the set of real numbers itself. There is a point conce,rning

notation that should be made. Instead of writing the real number

associated with the ordered pair (a,b) in function notation, say

S[(a,b)] , where S (standing for "sum") is the function just

described, we use the usual notation and write a b .

15-2. Internal Operation.

Let us try to abstract what is algebraically essential in the

example of addition of real numbers. Suppose that A is an

arbitrary non-empty set of elements, the nature of which need not

concern us. Suppose further that there is given a function which

is defined for the ordered pairs (a,b) , where a C A and be_ A

which assigns to each such ordered pair a member of A . Such a

function is called an internal operation in . (It is called

"internal" because the components a and b of the !aut. (a,b)

are drawn from A and the output assigned by the function is also

a member of A . Hence, the operation in question does not involve

data taken outside of A .)

There is also a notion of an external operation and, indeed,

an example is to be found in the algebra of vectors when one

considers real multiples of a given vector so that input is an

ordered pair of the form (real number, vector) and output is a

vector. Here we go outside the domain of vectors to specify the

input--hence "external".

However, in this chapter we shall consider only internal

operations and for that reason we shall henceforth simply say

"operation" rather than "internal operation". As it is customary,

we shall usually denote an operation by a multiplication sign

and the element assigned to the ordered pair (a,b) by a b

when we are concerned with a single operation. We shall also write
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"ab" for "a b" when there is no doubt about the meaning. We

shall have occasion later to deal with two operations and then we

shall usually use + and to denote the two operations.

If we are concerned with fir

the aid of a multiplication t

the same way that we listed

, we may specify with

ven operation acts in

ar pl.oduct of certain im-

portant pairs of natural number wiLn the aid of addition and

multiplication tables in elementary arithmetic. The procedure is

to use a square table marking rows by the elements of the set A

and columns by the elements of the set A The row markings are

indicated atthe left of the body of the table and the column

markings are indicated above the body of the table. Given

a,b A , in the space in the body of the table belonging to the

row marked "a" and the column marked "b" , we record the element

associated with (a,b) by the operation .

Here is a simple example: Let A = (0,1) and let denote

conventional multiplication in the real number system. Then the

operation may be tabulated as follows:

Suppose that we consider a set A consisting of two distinct

elements a and b and we ask in how many ways can we specify an

operation in A This amounts to constructing in all possible

ways two-by-two square tables in each space of which is recorded

an element of A . Here are some:

a

a b

a a

a a ,

a

There are 16 such operations in A .

[sec. 15-2]
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Exercises 15-2

1. List the remaining 12 operations in A

2. Let A . (1, i, -1, -i) and let . denote conventional

multiplication for complex numbers. Show that is an

operation in A and construct the table for

It is of interest to note that, if2 is a finite set con-

taining n elements, then there are nn distinct operations in

A . (For n . 2 , we have 2
4
= 16 distinct operations in A ;

for n . 3 , we have 39 = 19,683 distinct operations in A )

We shall be interested in studying the composite object

consisting of a non-empty set A and one or two operations in A.

Precisely, the term "composite object" is to be taken here to mean

either an ordered pair of the form (A, ) where is an

operation in A or an ordered triple of the form (A, + , . )

where + and are operations in A . Such a composite object

is called an algebraic structure with one operation (or two

operations respectively). An example of a structure with one

operation is given by taking A as the set of integers'and as

the customary addition. An example of a structure with two

operations is given by taking A as the set of real numbers and

4. and respectively as the customary addition and multiplication

for the reals. Another example of a structure with two operations

is given by taking A as the set of real numbers, as the

customary multiplication for the reals, and + as the customary

addition for the rPals.

Now it turns out that the interesting structures are those

which are subject to various laws. We saw that the number

systems which we studied earlier were structures with two opera-

tions which respected such laws as the commutative laws, the
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associative laws, and the distributive law. If we wished to take

into account structures which are not sUbject to any restrictions

or laws, we would be faced with many different kinds of structures

having very few properties in common. We cannot hope to find

interesting results which would be valid for all structures with

a given set A and with a given number of operations.

On occasion, inst.-id of referring to the structure "(A, )"

or "(A, + , )" 11 use the less formal "A together with

the operation ' -)r together with the operations + and

respectively, _Li as "A and the operation , etc.

We shall concentrate on two important.structures which

permeate elementary algebra--the group and the field. Our

interest will center principally on the notion of a field which

embraces three of the important number systems which we have met

so far--the systems of the rationals, the reals, and the complex

numbers.

15-3. Group.

Suppose that we consider a structure with one operation

(A, ) The example which we cited above, where A is the set

of integers and is the customary addition, has the following

two properties:

(1) The associative law for addition is satisfied.

(2) Given integers a,b, there exists a unique integer x

satisfying a + x = b and there exists an integer y

satisfying y + a = b .

(We ignore deliberately the question of the equality of x

and y for a reason which will become clear presently.) If we

ask for structures with one operation which share these listed

properties with this special structure, we are led to the very

'&D3
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important structures with one operation called groups. They

appear throughout mathematics in many different guises. The study

of groups as such is an instance of algebra at its purest.

Specifically (A, . ) is said to be a group provided that the

following two conditions are satisfied:

G 1. The operation is associative. That is, given

elements a, b, c in A , we have

(a b) c . a (b c) .

G Uiven elements a, b in A , each of the equations

a x b

and

y a . b

has a unique solution in A .

It isto be observed that we have not required that the

operation be commutative. In fact, we shall meet examples

where does not satisfy the commutative lew 1Nhich asserts that

a b=ba for all a,bEA. This is / it was important

in deflT.Ing the notion of operation to have c our input an

ordered oair of elements of A . The order_ which the components

are asz-Lgned may very well be essential. If lae operation

satisfflas the commutative law, the group is c.d.led commutative or,

as is more usual, abelian, in honor of the gr _Lt Norwegian

mathematician N. H. Abel (1802-1829) who did pioneer work in the

theory of groups.

Let us consider some examples of groups drawn from our

earlier experience. In these examples the operations are the

standard ones of the number systems so that the groups in question

are neesa-sarily abelian. We shall consider an example of a non-

atel:Mn group later (Section 15-5).
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Example 15-3a.

Example 15-3b,

Example 15-3c.

A = set of integers; the operation is the

conventional addition + . The second

postulate states that the equation a -1 x = b,

where a and b are integers, has a unique

integral solution.

A - set Of real numbers different from zero;

is the conventional multiplication.

A = set of vectors in 3-space; is the

addition 0

Exercises 15-3

1. Verify that each of the cited examples satisfies the group

postulates G 1 , G 2 . Show that the following are also

examples of groups:

Example 15-3d A is the set of n
th roots of 1, where n is

a positi- integer, and is the conventional

multiplication for complex numbers. Here it is

to be observed that A has just n elercnts.

Example A is the set of positive rational numbers;

is the conventional multiplication.

c. In what Isa-L dces the following fail to yield an example of a

group t of all complex numbers and is the con-

ventioIal mult-iplication?

3. Let A den.n.f, the set of real numbers of the form

a b v.ilee a and b are integers and let be the

converr, ow.L addition. Verify that is an operation in A

and thst Talla group postulates are satisfied.

4. Let A ,en.,e the set of real number-2 different from zero of

the for b,/7 where a and b a.r,e rational and let '

be the AlveL,ional multiplication. V-rify that is an

operat A and that the group poulates are satisfied.

4 0 t
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15-4. Some General Properties of Groups.

We have seen in our earlier work with number systems that an

important role was played by the notions of additive identity,

additive inverse, multiplicative identity, multiplicative inverse.

The counterparts of these notions appear in general group theory as

we shall now see. We must not forget that the commutative law

need not be in effect for an arbitrary group!

Identity element. Here we are concerned with the question

whether there is an element e in A which has the property that

a e..ea=a for all elements aE A. In each of the

cited examples of Section 15-3 there is precisely one eleinent with

this property. Thus in Example 1, the integer 0 is the unique

element having the stated property; in Example 2, it ls 1 ; in

Example 3, it is the zero vector (0,0,0); in Example 4, it iz 1;

in Example 5, it is 1. We now turn to the situation for an arbitrary

group and a proof of the following theorem:

Theorem 15-4a: Given the group consisting of the set A

and operation , there is a unique element e of A

which satisfies the following condition:

ae=ea=a
for all a E A .

(The element e is called the identity element of the group.

Note how this is in agreement with earlier usage.)

Proof: We fix an element b E A . That

there is at most one element e having the stated property

follows from the fact that e is a solution of the equation

b x = b which has preciaely one solution.

Now let e denote the solution of b x = b and let us

verify that a .'e . a for all a in A . Given a E A , let c

satisfy c b . a That is, c is the unique solution of

y b . a . Our reason for introducihg c is that, if we write

a as c b , we are in a position to relate the product ae

(which we should like to show is equal to a ) to the product

[sec. 15-4]
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b e about which we have information. Specifically,

a e = (c b) e

c . (b . e)

c b

a

The proof of the theorem will be complete when we show that

we also have e a . a for all a in A . Given aE A , let

d denote the unique solution of the equation y . a . a . In

order to relate d and e , we introduce f the unique so

of the equation a x = e (thereby linking theaements a and

e) . From d . a . a and a f = e , we have

(d a) f..a f
= e .

From the associative law and af = e , we have

(d a) f = d (a f)

d e .

Taken together these equalities yield

d e e .

Now e satisfies the equation y e e . (Recall that

ae . a for all a in A , in particular for a . e . This'

yields e e = e .) Since e and d both satisfy the

equation y e = e and since this equation has a unique solution,

e d . Hence on taking account of the relation d a . a , we

have e a . a . The proof of the theorem is now complete.

The notation He" will be reserved for the identity element.

Inverse element. Given a C A , let us consider the two

equations

a x e and y a e .
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Since we do not have the commutative law at our disposal, it

is not obvious that the solutions x and y of these respective

equations are equal. Let us see whether, in spite of the non-

availability of the commutative law, x = y Let us. multiply

each side of a x = e on the left by y . We obtain

y (a x) = y e .

Using the associative law and the basic prope,ov or identity,

we obtain

Hence

Since

(y a) x = y .

o X = .

e x =x ,

we conclude that x = y . The common solution of' a x = e

and y a . e is called simply the inverse of a . It is

denoted a

Exercises

1. Determine the inverse element of ln arbitrary element for

each of the groups .examined in Section 15-3. The answer

is to be stated in terms of the special interpretation of a

group given by the example. Thus in Example 15-3a, the answer

is "the inverse of a is -a" .

2. Show that a-1 b is the solution of a x = b and that

b a
-1 is the solution of y a = b .

3. Which of the multiplication tables considered in Section 15-2

satisfy the group requirements? In case of failure, state

the reason. In the case(s) where a group is specified,

exhibit the identity element and the inverse of each element.

4. Let A denote a non-empty set, and an operation in A .

Sho4 that there is at most one element e E A such that

a e=e .a.a for all aEA.

[sec. 15-4]
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5. Let A denote a non-empty set, and an operation in A .

Suppose that . satisfies the associative law. Suppose that

there exists an element eeAsuch that a e.e .a. a
for all a EA . (The element e is unigte by Exerrise 4.)

Suppose that for each a r A , there exi-L x C A such that

a x = e and Lhat there exists y C A such that y a = e .

Show that A together with is a group. Hint: With x

satisfying a x = e and y satisfying y - a . e , show

that a z = b is satisfied by .,1. b and, by multiplying

each side by y , that the only pc-ssible solution is y b .

Hence conclude that there is prectsely one solution. Treat

the remaining case similarly.

6. Construct multiplication tables far operations in a set A

of three elements so that the group postulates G 1 and G 2

are satisfied. Hint: We may assume that one of the elements

is e , the identity, and we may call one of the remaining

elements a and the other b . The construction of a

multiplication table can be carried out in only one way when

account is taken of the nature of the identity element and

the group postulates.

15-5. An Example of a Non-Abelian Group.

It is not hard to give an example of a group which is not

abelian by means of a specifically constructed multiplication

table. Hs..wever, there is greater interest in constructing an

example which is meaningful in terms of our earlier experience and

which at the same time is important in terms of our future study

of mathematics. The elements which we consider are the non-

constant linear functions; that is, the functions..? defined for

all real numbers by the formulas of the form

-P(x) = a x ,

where M and 4.7 are real numbers and a L o . Our set A

taken to be the set whose elements are the functions .

[sec. 15-5]
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It should observed that a givc linear function is

defined by une formula of th -rm . rrnt is, if

= r X 4- ci

for all real x , then a . 7- and "67 =6 . This is seen by first

sett!..ng x = 0 and inferring that, .cf and then that = 7'.

Composition. Suppose that we are given non-constant linear

functions ,P and m where ../(x) = m x and m(x) .r x -1-cr

It is often of interest to construct a function from the given

functions _4° and m in the following manner. Starting with

input x our first function yields output --,(x) . Suppose

that we now use ,P (x) as input with the function m . The output

is m()(x)) . We see that for each real x the quantity

m(A,(x)) is unambiguously specified. Thus we have a function

determined by the requirement that to each real x there is

assigned m(../(x)) . This function is called the composition of

m and It is denoted by m Let us determine

m(4'(x)) explicitly. We have

15-5b m(j(x ) ) 7^(./(x ) ) or
r (cc x +/g + cr

cc rx + ( t3r± 6 )

This computation shows that the function mo is a non-

constant linear function, for the coefficient of x in the last

line of Formula 15-5b is not zero. The rule which assigns to the

ordered pair (m,,,) of non-constant linear functions the composi-

tion function m 0 is an operation in A . By analogy with

what we did with sum andpioduct, we denote the operation of

composition by 0 . Let us pause to consider a numerical example

before we continue our study of the structure we have just intro-

duced.
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Thus, suppose

J(x) . 2x + 1, and m(x) = -2x + 3 .

We have fcr ,IP. m :

1(m(x)) = 2m(x) + 1 . 2(-2x + 3) + 1 . -4x + 7
.

We have for m

M(J(x)) = -2f(x) + 3 . -2(2x + 1) + 3 . -4x + 1 .

This example shows that with the specific choices made for
-7, and m, we have

../0m m. .

We recall that two functions which have the same input sets (i.e.,

domain) are different if they assign different outputs for some

member of their Common input set. In our example m and

assign different outputs for each real x . Hence they are
distinct functions.

This example shows us that the commutative law does not hold

for the operation of composition of (non-constant) linear

functions.

How dO we show that the structure consisting of the non-

constant linear functions together with the operation of composi-

tion is a group? We simply verify that G 1 and G 2 are

fulfilled with the operation ofcomposition.

G 1 . Suppose that _I , m, and n are three given (non-

constant) linear functions. Given x as input, (m. n)

assigns as output the A, output for input, m o n(x) i.e., the

output for, lnuut m(n(x)) . .Given x as input (Am)o n
assigns as output the .4,0 m uotputfor input n(x) that is,

m(n(x)) .
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But jam(n(x)) is the./ outputfbr input m(n(x)) Hence for

each real x as input, J. (m. n) and (Jam)a n assign the

same output. Hence the functions J a (ma n) and (A m). n are

equal. The associative law G 1 is verified for composition.

G 2. Given two members 01 A ,/ and m , we ask:

Is there a member n satisfying

15-5c Ja n = m ;

is there just one such member? Let us try to approach the

question in an exploratory way. Let

(x) . cc x 1-x9 , m(x) x

Suppose that
n (x) x -1-/z

satisfies 15-5c. From 15-5b we have

n(x) .cc Xx (7 ccia )

Hence if n m , we have, using the fact that a linear

function may be represented by only one formula of the form 15-5a,

Hence

15-5d

cc A */s + cc = or .

= -r/cc , cfg
cC

We conclude that there is at most one such member n . On

the other hand, if we take 7 and At. as given by 15-5d, the

function n defined by

n(x)

does satisfy 15-5c. Hence 15-5c has a unique solution.

The treatment of the other equation, n.-/. m , where.,

and m are given members of A , is similar. Thus we see that

the set of non-constant linear functions together with the
__-

operation of composition is a non-abelian group.

[sec. 15-5]
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Exercises 15-5

1. Furnish the details concerning the equation no.P = m ,

where'," and m are given members of A .

2. Determine the identity element of the group which we have

studied in this section.

3. Determine the inverse of I if ,i(x) = M x +/g , CC/ 0 .

4. Shoa by direct computation that n =Jo m satisfies

fon = m and that n = m0j-1 satisfies n01= m where
I(x) =Mx + and m(x) = 74x+cf , cC /0 , Y1/0.

5. Show that ..4,0 m = mo .1 for the functions of Exercise 4 if

and only if (M - 1)cr = (r1 -

6. Let A denote the set of ordered pairs of real number's with

non-zero first components. Given (a,b) , (c,d) in A

let (a,b) (c,d) be defined as (ac, ad + b) . Show that

(A, ) is a group. What is the identity element? What is

the inverse of the element (a,b) of A ? _Is there any

relation between this group and the group of non-constant

linear functions treated in this section? Hint: Use No. 5

of Exercises 15-4.

7. Suppose that A is the set of ordered pairs of rational

numbers with non-zero first components and that is

defined as in Exercise 6. Show that (A, ) is a group.

Show that a corresponding result holds when A is the set

of ordered pairs of complex numbers with non-zero first

components and again is defined as in Exercise 6.

15-6. Field.

We now turn to the consideration of an algebraic structure

which is present in very many areas of mathematical study. We

refer to the notion of a field. Once the definition of a field

is stated, it will be clear that each of the following number

systems is a field:
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(a) The rationals with the usual addition and multiplication.

(b) The reals with the usual addition and multiplication.

(c) The complex numbers with the usual addition and

multiplication.

Let A denote a set containing more than one member. Let +

and denote two operations in A . Then (A, +, ) is called

a field provided that the following postulates are satisfied:

F 1. The structure (A, +) is an abelian group.

(The identity element of this group is called "zero",

and is denoted by "0" in accordance with the usage

employed for the number systems which we have studied

earlieri the inverse of the element a is denoted by

-a , and the solution of a + x = b by b - a).

F 2. Let B denote the set obtained from A by the

removal of the element 0 . It is required

(1) that be an operation in B--i.e., if

bl , b2CB , then 131 b2CB ; and

(2) that the structure (B, ) be an abelian group.

(The identity element of this group is called

"one" and is denoted by "1" . When wespeak of

as an operation in B , we actually refer,

not to the full operation in A , but rather

to the.function obtained from by restricting

attention to inputs of the form (b1,b2) where

b
1

and b 2
are members of B .)

F 3. The two distributive laws

a (b + c) =ab+a c
(b + c) a=ba+c a

hold, a, b, and c being arbitrary elements of A .

Some remarks are in order.
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Given a field (A, +, ) , it is sometimes convenient in

order to avoid unnecessarily clumsy modes of expression to use the

phrase "the field A" and to mean either

(1) the set A , or

(2) the field in the strict sense (A, 4., )

Which meaning,is intended will be clear from context. When we

'speak of the elements of the field, we mean of course the elements

of A .

We shall also agree to write, as is usual, "oh" for

"a b" .

Of course, it is possible to state'the required postulates

in alternative form and in detail. The group concept, however,

permits us to separate off in individual compartments a description

of the action of each of the given operations + and . It is

now clear that if the two operations are to be interrelated in a

serious sort of way, some condition pertaining to both + and

must be in effect. In the postulates which we have listed, it is

F 3 which links + and In particular, it is natural to

turn to F 3 to see how 0 acts in multiplication.

We have

0 + 0 0 ,

and hence if a is an arbitrary element of A

a(0 + 0) . a0 ,

and

(0 + 0)a . Oa

Applying the distributive laws, we obtain

a0 + a0 = a0

and

Oa + Oa . Oa ,

relations which state that a0 and Oa are each the zero of A ;

i.e.,

a0 . Oa . 0 ,

[sec. 15-6]
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Postulate F 2 pertains only to B . Are the commutative

and associative laws in effect for in A ? The only case that

need concern us is when one of the given elements is zero, but

then we see that the two laws are in effect, for each side is

zero if one of the given elements is.

Since 1 0 = 0 and 1 a.a,a/ 0 , we see that 1

is an identity element for in A The element 1 is the

only element in A with this property. If e EA satisfies

a e . a for all a E A , we have

and

Hence

1 e 1

1 e e .

1 e

Consider equation a x b . If a . 0 and b / 0 , then

there is no solution. If a = 0 and b = 0 , then every element

of A is a solution. Suppose that a / 0 . Here we see, using

the same argument that we used in the study of a group, that if

a / 0 , the equation has the unique solution a-1 b . Again,

following our earlier practice for number systems, we shall aenote

the solution of a.x.b,a/ 0 , by

We now see that the identities and theorems which were ob-

tained for the rational number system, the real number system, or

the complex number system, and whose proofs depended only on the

structural laws which hold for an arbitrary field, continue to hold

for an arbitrary field. Thus, if a, b, c, d are members of an

arbitrary field and b 0 and d 0 , then .

a c ad bc
15-6a bd
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Exercises 15-6

1. Verify that Equation 15-6a holds for an arbitrary field.

2. Given that a, b, c, d are elements of a field and that

b 0 , c p 0 , d 0 Show that (a/b)/c = a/bc and that

(a/b)/(c/d) = ad/bc .

3. Show that if a, b, c, d, e, f are arbitrary elements of a

field and ae - bd 0 , then the system of equations

{Lax + by = c

dx + ey = f

has a unique solution (x,y) whose components are elements

of the field. Give explicit formulas for the solution.

4. Let A consist of the numbers 0, 1, 2 Let an operation

+ be defined in A by the requirement that if a, b E A ,

then a + b is to be the remainder obtained when the number

a + b (+ being the conventional addition) is divided by 3 .

Thus if a . 2 and b = 2 , then a + b is the remainder

obtained when 4 . 2 + 2 is divided by 3 ; i.e., 1 .

Similarly, let an operation be defined in A by the

requirement that, if a, b E A , then a b is to be the

remainder when the number ab (reference being made to

conventional multiplication) is divided by 3 Display the

tables for + and . Verify that the structure (A, +, )

is a field. This exercise yields an example of a field which

has precisely 3 elements.

5. Let A consist of two distinct elements a, b . Let + and

be the operations in A given by the following tables.

a b

a a b

b b a

a

a b

a a

ab

4- I
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Show -:hat the structure (A, +, ) is a field.

Sy the additive identity and the multiplicative identity

trffis field.

ld.

G_7=ttn field whose elements constitute a 7-et A . It is

natural :onsider subsets B of A which tk.-,n together with

+ and r;,.ike up a field; that is, subsets hich ha,re the

followzg wo properties;

(1), flhen + and a7e restricted to o= 7ed pairs (b1,b2) ,

4hose components'17re in B , they dE ne operations in B

(2) B together with + and so restricted is a field.

Such a si.....Lset B of A is called a subfield of A Of course,

one can also call such:a B taken together with its two operations

a subfield of the given field. The meaning which is intended will

be clear from context.

With this notion we can proceed to find out something about

the architecture of the complex number system. Let Q denote

the set of rational numbers; let R denote the set of real

numbers, and let C denote the set of complex numbers. We know

that Q is a subset of R and that R is a subset of C ; in

the notation of the theory of sets,

QCRCC

We may ask whether there are any intermediate subfields between

R and C or between Q and R , and whether there is any sub-

field of the complex number system which is a proPer part of Q .

Suppose that A is a subfield of the complex number system

which contains R . Suppose that A contains an element not

already in R . Then such an element must be of the form a + bi

414
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where a real amd b I 0 . a E. A ,

. Since b EA , J.E; Hence given
arbitrar- c and d , we have di EA and thereeftre

c + diE. CCA . Hence A = C We are led to

following

Theorem If A is a subfield of the complex numte=

system cont rz , then either A = R or A = C .

This theore7- ;44-11Ts- $ that there is no subfie'l of L:he complex

number syst.. contains R as a proper subset and at the

same time i. Dr7pe:1 subset of C .

A seco7e -.7 that is easy to obtain is the following:

Theorem L,7,- Every subfield of the complex number system

contains Q

Proof: leo A denote a subfield of the complex number

system. We nc-Je tnat if a and b belong to A and b 0 ,

then a EA Ncia 1 E7I . It is a consequence of the additiveF
closure of A and the well order proPerty of the natural number

system that evezy natural number is a member of A . Suppose that

there are one or mare natural numbers not in A and let m be

the minimal memilf the set of natural numbers not in A (the

well order prol=._, -asSures as there is such a minimal member).

Then m - 1 :Ls_ 7._77nmber of A , but our hypothesis tells us m
is not. Since m-= (m - 1)' + 1 and m - 1 and 1 are in A

it follows from the additive closure of A that m itself is in

A . This contradiction proves that the set of natural numbers

not in A is empty. It now follows that every integer is a

member of A , since for each natural number n , -n is a member

(sec. 15-7)

415



:365

of A , Since A contains the quotients of ite-7aers,

follows that A contains every quotient of the .1tr:
q

where p and q are integers and q 0 : This -saTs that emery

rational number is a member of A In other womds, QCA
The theorem is established.

5.ibfields intermediate to Q and R . Ther a vast

hierar=hy of subfields between Q and R . Their roudy is a

large undertaking. We shall content ourselves tz sft,E-that aertain

intermediate fields can be exhibited in a simple

Let A denote the set of real numbers of tha.

a + big

where a and b are both rational. What can be_dlid about sum

and nroduct of elements of A ? Given a, b, c, d rational, we

see that

(a + big) + (c + d ig) . (a + c) + (b + d) ,

and since a + c and b + d are rational, we have

(a + b ig) + (c d ig)EA .

Similarly,

(a 4. b fg). (c + v".7) (ac + 2bd) + (ad + ,

and since ac + 2bd and ad + be are rational, we have

(a ..+ b ")(c + d ig) EA

Suppose that a + big . 0 where a and b are. rational.

Then b = 0 , otherwise ig would be rational. It follows that

also a = 0 . Therefore, a member a + b./7 of A (a and

rational) Az equal to zero if and only if a = 0 and t = 0 .

This implies that if a + big 0 , then a2 - 2b 0 . Other-

wise we should have

,
0 . a

2
- 2b

2 = ka + big)(a + (-b) jg) ,

so that either a + b .srz = 0 or a + (-b) 0 . Frnm:

a + (-b) = 0 , we have a = 0 and -b = 0 and consequently

[sec. 15-7j
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-
2

= 0, then

We now have by a fa iliar ratinalization methm,.. :!or

+ b (a + b - d .17)

+ d '(c - ../7)(c - d

(ac - air) (bc ad),,17

c
2 - 2d- c

2
-

= 0

This tells us that the quotient of two members of A is also

a member of A .

It is now easy to verify that A is a subfield of the real

number system. We leave the details as an exercise.

Exercises 15-7

1. Show that A is a subfield of the real number syssam..

Let B denote the set of real numbers of the -f..1rm a + bv/I

where a and b are ratimnal. Show that B ls
of the real number system.

*3. Show that the only real numbers belonging to both A and B

are rational. In particular, IT does not beIang to A .

Hence, A is Intermediate in the strict sense to Q and R .

That is, ), is a -proper part of A, and A is a proper part

of R.

Reference

Barkhoff, Garrett and Saunders MacLane, A Survey of

Modern Algebra (rev. ed.), Macmillan Company.

2, Books citd in the bibliography of Reference 1 above.
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center, 351
conjugate axis, 343
transverse axis, 343

identities, 612
.identity,

additive, 24
multiplicative, 6

identity element, 851
identity function, 167
imaginary, 254

part, 262
unit, 253

inconsistent systems, 364
inequality, 18

graph of, 140, 145
infinite decimal, 72, 774
infinite geometric serles, 774
initial point, 630
inner product, 655
integers, 1, 24, 42
intercept form, 313
intercepts, 145
internal operation, 845
interpolation, 498-501, 579
inverse,

additive, 25
multiplicative, 48
of_a linear function, 190, 191

inverse element, 852
inverse functions, 183, 184
inverse variation, 348
irrational, 73

decimal, 73, 74
isomorphic , 680, 685
law of cosines, 594, 658
law of sines, 598
:limit of a sequence, 754
limits - theorems on, 758
linear combination, 374, 449
linear equation, 310

421



logarithm function, 455
graph of, 456
properties of, 474

logarithm function with base a, 511
logarithms of nt, 813
major axis, 334
mantissa, 488
mathematical system, 678
maximum point, 210
mid-point formula, 127, 128
minimum ppint, 209
minor axis, .334
multiplication, 20, 40, 55, 64, 75
multiplication by scalars, 648
multiplication formulas,

identities for, 700
multiplicative inverse, 48, 264, 266
natural logarithm function, 456
natural numbers, 1, 4, 22, 33
n factorial, 99
non-abelian group, 854, 857
th

n roots of unity, 718

n
th term of a geometric sequence, 749

n
th term of an arithmetic sequencet 740

one-to-one correspondence, 120, 189, 680, 783
ordered m-tuples, 788, 792
ordered pairs, 789
ordered partition of a set, 831
ordered triple, 791
order property, 13, 31, 53
ordinate, 120, 125
origin, 119
parabola, 205, 221, 315

axis, 315
directrix, 315
focus, 315
latus rectum, 324
standard form, 318
vertex, 315

parallel, 133, 134
parallel rays, 629
partial sums, 765
partitions, 826
Pascal's Theorem, 818
permutations, 783, 795
plane, equation of, 415
point-slope form, 305
polar form, 683, 692
polynomials, 86, 87, 88, 289
prescribed values, 196, 220
product,

dot, 656
inner, 655 422



projection, 120
properties of groups, 851
Pythagorean Theorem, 125
quadrant, 122
quadratic equation, 203, 243, 252
quadratic equations with complex coefficients, 707
quadratic formula, 228
quadratic inequalities, 238
quotient, 43
radian measure, 556, 559
range, 165, 166, 173, 176, 183, 184
rational expressions, 95

numbers, 1
number system, 43, 65
solution, 79

real number system, 1

reflection, 146, 283
reflexivity, 6, 20, 40, 63, 75
repeating decimal, 67, 69
resultant, 665
Riemann, Bernhard, 727
Riemann surface, 727
root, 224, 229
roots of order n, 710
scalars, 644
selections with repetition, 834
sequences and series, 731

arithmetic sequence, 739
convergent sequence, 756
divergent sequence, 757
finite sequence, 731
finite series, 732
geometric sequence, 748
geometric series, 748
infinite geometric series, 774
infinite sequence, 731
infinite series, 732

n
th term of a geometric sequence, 749

nth term of an arithmetic sequence, 740
series for,

cos x, 771

e
x

, 771
sin x, 771

sets satisfying geometric conditions, 156
sigma notation, "2", 745
signed angles, 550, 551
sine function, 561, 566, 569
slope, 130, 132, 192, 303

of parallel lines, 133
of perpendicular lines, 134

slope - intercept form, 306

423



solution of an equation, 224
solution set,

of equatimn or inequality, 361
of a system, 363
of three first degree equations, '417, 422, 426

special angles,
trigonometric functions of, 573, 574

square roans, 701
standard fultc, 262
standard form for 1-mg x, 488
standard-position,

the decimal point, 496
straight 11i. 303
structure, 1, 2
subfield, 863
subfields into-immediate to Q and R, 865
subsets Of a .:rinite set, 8o6
subtraction, 75
sum of a finLte geometric series, 751
sum of an inf''nite series, 764, 766
sum of arittmatic series, 743
sum of cubes, 89
summation mmtation, '734

sum s
n

finite series, 735

symmetric, 233.
symmetry, .6,) 20, 4o, 64, 752 146-148
system of enmatzions, 361, 381, 389, 398, 422
table of =LIM :logarithms, 464, 5022 503 .

table of trfganometric functions, 578, 580
tangent ftunotion, 561, 566
terminal point, 630
terminating decimal, 66, 67
Theoremof deMoivre, 695
trace, 422
'transittvfty, 6, 13, 20, 40, 55, 64, 75
triangle 1-megna1ity, 62, 280
triangulation,

ma:imdzif solution, 432
trichotomy, .13, 16, 55, 74
trigonometrim funations, 561, 566, 583
two-dimens-T=-Al vector space, 682
variation,

direct .308

vectors ttree dimensions, 661
vector sr:ace, 681.

velocity-. 674
vertex, 205, 213, 220
vertical 71:Ina, 133, 176, 197
well orae.,- property, 20, 40
work, 672
zero element for vector,

addition, 636
zero factorial, 799
Zero.of a Imnlynomial, 291
zero vector, 648 424


